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Abstract

Cardiovascular diseases, particularly atherosclerosis, remain leading causes of morbidity
and mortality worldwide, necessitating innovative approaches for early detection, risk
stratification, and management. This research explores the application of advanced
computational techniques—artificial intelligence (AI) and agent-based modeling
(ABM)—to address the complexities of atherosclerosis progression. Al, leveraging
machine learning and deep learning algorithms, has demonstrated significant potential in
analyzing large-scale datasets, including electronic health records, medical imaging, and
genetic profiles, to predict disease onset and progression with greater accuracy than
traditional methods. Concurrently, ABM offers insights into the intricate biological
interactions within the cardiovascular system by simulating the behaviors of individual
agents, such as cells and tissues, in response to various stimuli. However, both
methodologies present limitations, including challenges related to data quality, model
interpretability, and the complexity of biological systems.

This research underscores the need for interdisciplinary collaboration between
computational scientists, clinicians, and engineers to refine these models and facilitate
their integration into clinical practice. Sensitivity analysis was conducted on the
developed ABM model and a virtual population was created from the data in order to
develop as surrogate model based on Al The dataset captured a landscape of patient-
specific variability and provided significant variation for the model to learn. The
surrogate model for atherosclerotic plaque progression was based on artificial neural
networks and deep learning and performed with 95.4% accuracy and congruency with
the ABM indicating its strong potential to be used in practice.

By addressing their inherent limitations, Al and ABM hold the potential to revolutionize
cardiovascular medicine, leading to more personalized and effective treatments. Future
research directions include improving data integration, enhancing model transparency,
and conducting real-world validation studies to translate computational insights into
meaningful clinical outcomes. The findings of this study contribute to the growing body
of evidence supporting the role of ABM andAl surrogate modeling in advancing our
understanding of cardiovascular diseases. The potential of ABM modeling backed with
decreasing of computational resources necessary and enhanced speed of decission
making ensured by surrogate modeling offers promising pathways for better patient care
and disease management.

Keywords: atherosclerosis, plaque progression, multiscale modeling, agent-based
modeling, artificial intelligence



Sazetak istrazivanja

KapauoBackynapHe 60/1eCTH, HApOYUTO aTepoCKJepo3a, U Jabe Cy BozehH y3pouu
MOpOUUTETA U MOPTaJMTETa LIMPOM CBETa, LUITO 3aXxTeBa MHOBATHBHE NPUCTyIe 3a
paHO OTKpUBamwe, CcTpaTUPUKaALMjy pHU3UKAa U ynpaB/bame 6osectuma. OBO
UCTpPaXUBakbe HCTpaXKyje NPUMEHY HalNpeJHUX padyHApCKUX TeXHHWKa—BellTayke
uHTenurennyje (Al) u Mozenupamwa 3acHOBaHOr Ha areHTuMa (ABM)—y pemaBamy
KOMILJIEKCHOCTH Tporpecuje aTepockijepo3e. BellTauka WHTeJWreHLdja, Kopuctehu
aJITOPUTMe MALlUHCKOT U AyOOKOT yueka, IoKa3asa je 3HauyajaH NOoTeHIMjajl Y aHaJIUu3U
BeJIMKUX CKyNOBa TI0JaTaka, YK/bydyjyhu esleKTpOHCKe 3/JpaBCTBeHe 3alllcCe,
MeJULMHCKe CJIMKe U TeHeTCKe Npoduiie, 3a INpelnu3Huje NpefBubame IojaBe U
nporpecuje 60JieCTU 0J, TpaJAULMOHAIHUX MeToa. MUcToBpeMeHo, ABM npyxa yBuz y
CJI0’KeHe GUOJIOLIKe UHTEepaKILUje yHyTap KapJUOoBacKyJapHOTr cUCTeMa CUMYJIMpajyhu
NoHallame Noje/JHHAaYHUX areHaTa, nonyT hesuja U TKMBA, Ka0 OATOBOP Ha pa3jiMuUTe
ctumyayce. Mehytum, obe MeTOJ0JiOTHje UMaAjy OrpaHUYEeHa, YK/bYydyjyhu Hn3a3oBe
Be3aHe 3a KBaJIUTeT NoJlaTaKa, UHTEPIPeTaOUIHOCT Mo/Ziesla U CJI0KEHOCT OMOJIOIKUX
cucreMa.

OBO HCTpakMBame HUCTHYe NMOTpeby 3a MHTEepAUCLUIJIMHAPHOM capaAwkoM usMeby
payyHapCKHUX Hay4YyHMUKa, KIMHUYapa M MHXemwepa paau yHanpehemwa oBUX Mozesa U
IbUX0Be UHTerpalyje y KJIUHUYKY npakcy. CnpoBesieHa je aHa/Ju3a OCET/bUBOCTU Ha
pasBujeHoM ABM Mogeny, a U3 mojaTaka je KpeMpaHa BUPTYeJIHA INONyJalnuja pajgu
pa3Boja cyporaT Mo/ieJla 3aCHOBAHOT Ha BeLITA4yKoj] UHTesureHuuju. CKyn nojartaka je
00yxBaTHO CIEeKTap BapujabUJIHOCTU cieniupryHe 3a NalujeHTe U 06e36e10 3HaAYajHY
Bapujalujy 3a ydewe Mogesia. CyporaT MoJes 3a NPOrpecujy aTepoCKJIepOTUUYHUX
IJIaKOBa 3aCHOBAH je Ha BelITAaYKUM HEYPOHCKUM MpexaMa M [JyOOKOM y4Yewmy U
IIOCTUTAO0 je Ta4yHOCT o 95.4% u yckaaheHocT ca ABM, 1To ykasyje Ha HeroB BeJIMKU
NOTEHIYjajl 3a NPAKTUYHY IPUMEHY.

Y3 nmnpeBasuiaxewe ypoheHux orpaHudewa, Al u ABM wumajy noreHuujan jga
pPEeBOJIYLIMOHHUILY KapAWOBAaCKyJIapHY MeJUIMHY, BoJehu Ka NepcoHa/M30BaHUjUM M
epuKacHUjuM TpeTMaHMMa. Byayhu mnpaBiu uUcTpakMBamka YK/bY4dyjy yHamnpebheme
MHTerpanyje nojaTaka, 1060/bl1ame TPaHCIIAPEHTHOCTHU MO/JeJla M ClIpoBoheme cTyjuja
BaJlMM3allije Y CTBApHOM CBeTY pajiu IpeTBapaka payyHapCKUX yBUJA y 3HA4ajHe
KJIMHUYKe pe3yJsTtaTe. Hanasu oBor ucTpaxuBamwa AonpuHoce pactyhoj 6a3u Aokasa
Koju moap:kaBajy ysory ABM u Al cyporat Mopenupawa y yHanpehewy Haiier
pasyMeBama KapJAuoBacKy/aapHux 6osiectu. [lotenuujan ABM Mopenupamwa, noapxkaH
CMalbemheM IOTPeOHUX padyHAapCKUX pecypca U ybOp3amweM JoOHOLIeHa OJJyKa
3axBaJbyjyhu cyporat Mozenupamy, Hyiu ooehaBajyhe nyTeBe 3a 60/by Hery naryjeHaTta
U yIpaB/bakbe 60J1eCTUMA.

K/byyHe peun: aTepock/jepo3a, Mporpecdja IJaka, BHUUIECKAJTHO MOJEJHpPalbe,
MoO/le/IMpalbe 3aCHOBAHO Ha areHTUMa, BelllTauKa MHTeJUreHI1ja
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1. Introduction

Atherosclerosis is a chronic, progressive disease characterized by the buildup of plaques
within the arterial walls, leading to reduced blood flow and increasing the risk of severe
cardiovascular events such as heart attack, stroke, and peripheral artery disease. As a
leading cause of morbidity and mortality worldwide, atherosclerosis is responsible for a
significant proportion of deaths related to cardiovascular disease (CVD), which remains
the leading global cause of death. Despite advances in prevention, diagnosis, and
treatment, the burden of atherosclerosis continues to rise, driven by factors such as aging
populations, sedentary lifestyles, and an increase in metabolic disorders, including
obesity, diabetes, and hypertension.

The pathophysiology of atherosclerosis is complex, involving a combination of endothelial
dysfunction, lipid accumulation, inflammatory processes, and cellular responses within
the arterial wall. These interactions result in the formation and growth of atheromatous
plaques, which can become unstable, leading to plaque rupture and thrombosis. Early
detection and accurate risk stratification are critical for preventing the progression of the
disease and reducing the likelihood of life-threatening complications.

However, conventional diagnostic methods, such as clinical risk scores and medical
imaging techniques, often fall short in identifying subtle or early-stage disease, making it
difficult to intervene before significant damage occurs. Additionally, the multifactorial
nature of atherosclerosis, with contributions from genetic, environmental, and lifestyle
factors, presents a substantial challenge for personalized treatment approaches. In light
of these challenges, there is a growing need for novel methodologies that can capture the
complexity of the disease and enhance our ability to predict its progression.

1.1. Subject and aim of this dissertation

The subject of this doctoral dissertation is the development of an advanced model for
predicting the progression of atherosclerotic plaque in peripheral arteries, utilizing
sophisticated computational methods such as Artificial Intelligence (Al), agent-based
modeling (ABM), and finite element analysis (FEA). Atherosclerosis in peripheral arteries
is a major contributor to peripheral artery disease (PAD), a serious global health concern
that can lead to severe complications, including chronic pain, tissue ischemia, and, in
advanced cases, gangrene or limb amputation. Moreover, PAD is closely associated with
systemic atherosclerosis, significantly increasing the risk of major cardiovascular events
such as heart attacks and strokes. The ability to accurately predict plaque progression and
intervene early is therefore crucial for improving patient outcomes.

The primary goal of this research is to develop a predictive application that models the
behavior of atherosclerotic plaque in arteries. This tool will integrate Al, ABM, and FEA to
provide a powerful platform for clinicians and researchers to predict disease progression
and manage high-risk patients. The application will be embedded within the DECODE
platform, a comprehensive computational project aimed at advancing the diagnosis and
treatment of cardiovascular diseases. This research focuses on creating a data-driven
model that simulates the biological, mechanical, and hemodynamic factors influencing
plaque progression, thereby enhancing our ability to predict its trajectory in arteries.

Atherosclerosis, characterized by the buildup of lipid-rich plaques within arterial walls,
restricts blood flow and poses a significant risk for cardiovascular complications.



Peripheral artery disease affects the arteries of the legs and arms, leading to conditions
such as claudication, where muscle pain is caused by insufficient blood flow during
exercise, and in severe cases, critical limb ischemia and the potential for limb amputation.
Despite the availability of diagnostic tools such as ultrasound, CT angiography, and
magnetic resonance imaging (MRI), current clinical methods fall short in predicting how
plaques will evolve over time. This gap underscores the need for advanced models that
leverage cutting-edge technologies to improve predictions.

In combination with ABM, which provides detailed simulations of cellular and molecular
interactions during plaque formation, Al adds a layer of predictive power by learning from
vast datasets and making high-accuracy predictions about future plaque behavior. The
integration of Al into this modeling framework is crucial because it allows for real-time
analysis and prediction based on continuously updated patient data, enabling
personalized treatment strategies. Al will not only assist in risk stratification but also
guide therapeutic decisions, potentially identifying the optimal intervention points to
prevent adverse outcomes such as plaque rupture or total arterial occlusion.

ABM offers a complementary approach by simulating the complex biological processes at
play in atherosclerosis, such as the interactions between endothelial cells, smooth muscle
cells, and inflammatory cells in the arterial walls. By creating a virtual environment where
these "agents" interact over time, ABM allows researchers to model the dynamic
progression of plaques in response to both biological stimuli (e.g., inflammation, lipid
deposition) and mechanical forces (e.g., blood flow-induced shear stress). This agent-
based approach is particularly valuable for exploring "what-if" scenarios, where different
intervention strategies can be tested to determine their effect on plaque progression.

This interdisciplinary approach not only enhances the precision of predictions but also
provides a personalized aspect to the treatment of atherosclerosis. For instance, Al can
continuously learn from new patient data, improving its predictions over time, while ABM
and FEA simulate the biological and mechanical factors at play. Such a tool has the
potential to significantly improve clinical decision-making by offering tailored predictions
of plaque growth and rupture risk, leading to earlier and more effective treatments.

1.2. Starting hypotheses

The main hypotheses of the doctoral dissertation, derived from the research goal, the
candidate's previous research activities, and the results of other authors in the field of
research, consist of the following assumptions:

e It is possible to create artificial intelligence networks for predicting the
behavior of relevant parameters for plaque progression.

e It is possible to create an ABM (agent-based modeling) model for modeling
plaque progression and the interaction of drugs delivered directly into the
artery.

e It is possible to create an application for displaying a 3D model of the
peripheral artery and the plaque within it.

e It is possible to create a module as a part of DECODE platform API for real
deformations within the ABM, thereby achieving realistic behavior of the artery
and atherosclerotic plaque as deformable bodies.

2



1.3. Thesis structure

In Chapter 1, the subject and objectives of the dissertation are defined, including the
initial hypotheses and the contributions of the dissertation.

Chapter 2 explains the anatomy of the cardiovascular system, covering blood vessels and
the structure of arteries, with a particular focus on peripheral arteries. It also discusses
the function and mechanics of blood flow through the cardiovascular system.
Atherosclerosis is introduced as a significant health concern. The causes, progression, and
complications of atherosclerosis are discussed, highlighting the importance of
understanding its impact on cardiovascular health.

Chapter 3 delves into artery biomechanics, explaining the mechanical forces acting on
arterial walls and their role in the development and progression of atherosclerosis. The
interaction between arterial structure and plaque formation is emphasized.
Subsequently, the diagnostic methods for atherosclerosis, including imaging techniques
such as ultrasound, angiography, and magnetic resonance imaging, are explored. The role
of these technologies in early detection and ongoing monitoring of plaque progression is
discussed as well as current treatment methods for atherosclerosis, both surgical and
pharmacological, are reviewed. The effectiveness of different interventions is evaluated,
with an emphasis on the need for improved treatment approaches. Bioengineering
applications in cardiovascular medicine, highlighting the role of computational models in
understanding atherosclerosis are presented next. The chapter discusses the use of Finite
Element Analysis (FEA) in predicting plaque behavior and disease progression. Agent-
Based Modeling (ABM) is introduced as a novel method for simulating the progression of
atherosclerosis. The state-of-the-art in ABM applications for cardiovascular diseases is
reviewed, with a focus on its potential to improve patient outcomes. Subsequently,
applications of Artificial Intelligence (Al) in cardiovascular medicine, explaining how Al-
based decision support systems are transforming diagnosis and treatment. The role of Al
in analyzing complex datasets and improving clinical decision-making is explored.

Chapter 4 presents experimental research on atherosclerotic plaque progression,
describing the integration of ABM and FEA models. This chapter explains the coupling of
computational fluid dynamics with ABM for a more comprehensive understanding of
plaque dynamics. Sensitivity analysis of ABM parameters is conducted to evaluate the
robustness and reliability of the model in predicting plaque progression under different
conditions. Finally a surrogate model is developed to streamline computational analysis,
reducing the time and resources needed for predicting plaque progression while
maintaining accuracy. The process of dataset curation is detailed, outlining the methods
used to collect, retrieve, and preprocess data for model training and validation,
development and implementation of the Artificial Neural Network (ANN) model, designed
to predict plaque progression based on patient-specific data detailed and performance of
the ANN model evaluated. A comparative analysis of the developed models with existing
research in the field, assessing the improvements and contributions of this work to
cardiovascular medicine is presented. Finally, the integration into DECODE cloud
platform via an API is explained.

Chapter 7 presents the conclusions of the dissertation, summarizing the research
findings, contributions to science and medicine, and directions for future research.
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2.Cardiovascular system

The cardiovascular system, composed of the heart and an extensive network of blood
vessels, functions as the body's primary transport mechanism, delivering oxygen and
essential nutrients to tissues and removing metabolic waste products (Figure 1. Human
cardiovascular systemFigure 1) (Badila et al,, 2017). This system is fundamental to
maintaining homeostasis and ensuring the proper functioning of organs and tissues. A
comprehensive understanding of the physiology and biomechanics of the cardiovascular
system is crucial for elucidating the mechanisms underlying cardiovascular diseases,
particularly thrombosis and atherosclerosis. These conditions are major contributors to
morbidity and mortality worldwide, necessitating detailed investigation and innovative
therapeutic approaches (Cameron et al., 2020).
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Figure 1. Human cardiovascular system (Online resource 1)

The heart serves as the ,pump” of the cardiovascular system and is divided into four
chambers: two atria and two ventricles. These chambers are separated by septa, with the
interatrial septum dividing the atria and the interventricular septum separating the
ventricles. The chambers work in a highly coordinated manner to ensure the
unidirectional flow of blood (Figure 2).
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Figure 2. Heart physiology (Online resource 2)

The right atrium is the upper right chamber that receives deoxygenated blood from the
body through two large veins: the superior vena cava and the inferior vena cava. The
superior vena cava drains blood from the upper part of the body, including the head and
arms, while the inferior vena cava carries blood from the lower regions. The right atrium
also receives blood from the coronary sinus, which drains deoxygenated blood from the
heart's own circulation (Hall and Hall, 2020). Blood then flows from the right atrium into
the right ventricle through the tricuspid valve, which prevents backflow during
ventricular contraction. The right ventricle, with its relatively thin walls, pumps blood
into the pulmonary circulation through the pulmonary valve and into the pulmonary
artery. This artery branches into left and right pulmonary arteries that carry
deoxygenated blood to the lungs for gas exchange. In the lungs, blood travels through
capillaries surrounding the alveoli where carbon dioxide is exchanged for oxygen. This
oxygen-rich blood then returns to the heart via four pulmonary veins, entering the left
atrium. Unlike other veins in the body, pulmonary veins carry oxygenated blood. The left
atrium receives oxygenated blood from the lungs. This blood then passes through the
mitral valve, which prevents backflow, into the left ventricle. The mitral valve, also known
as the bicuspid valve, has two cusps and is structurally more robust than the tricuspid
valve due to the higher pressures in the left side of the heart. The left ventricle, with its
thick muscular walls, is the most powerful chamber of the heart. It must generate
sufficient force to propel blood through the systemic circulation. Blood is ejected from the
left ventricle into the aorta through the aortic valve. The aorta is the largest artery in the
body and distributes oxygenated blood to all parts of the body via the systemic circulation.
The heart valves ensure unidirectional blood flow and prevent backflow during the
cardiac cycle. The tricuspid and mitral valves, located between the atria and ventricles,
are known as atrioventricular valves. The pulmonary and aortic valves, located at the exits
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of the right and left ventricles respectively, are known as semilunar valves. These valves
open and close in response to pressure changes during the cardiac cycle, maintaining
efficient circulation.

The cardiac cycle comprises two main phases: diastole and systole. During diastole, the
heart muscle relaxes, and the chambers fill with blood. The atrioventricular valves are
open, allowing blood to flow from the atria to the ventricles. During systole, the heart
muscle contracts, the atrioventricular valves close to prevent backflow, and the semilunar
valves open to allow blood to be ejected into the pulmonary artery and aorta. The heart's
ability to contract rhythmically is regulated by its intrinsic electrical conduction system.
The sinoatrial (SA) node, located in the right atrium, acts as the natural pacemaker,
generating electrical impulses that spread through the atria, causing them to contract. The
impulses then reach the atrioventricular (AV) node, which delays the signal before
transmitting it to the ventricles via the bundle of His and Purkinje fibers. This delay
ensures that the atria have time to fully contract and empty their blood into the ventricles
before ventricular contraction begins (Hall and Hall, 2020).

2.1. Blood vessels

The blood vessels are classified into three primary types: arteries, veins, and capillaries
(Figure 3). Arteries carry the blood away from the heart and are characterized by thick,
elastic walls that can withstand high pressure. Veins return blood to the heart and have
thinner walls and valves that prevent backflow, facilitating the low-pressure return of
blood. Capillaries are microscopic vessels where the exchange of gases, nutrients, and
waste products occurs between the blood and tissues (Silverthorn, 2020).
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Figure 3. Artery, vein and capilary structure(Jouda et al, 2022)

Arteries are blood vessels that carry blood away from the heart. They are characterized
by their thick, elastic walls, which are designed to withstand and accommodate the high
pressure generated by the heart's pumping action. The walls of arteries consist of three
layers: the tunica intima, tunica media, and tunica adventitia.

Tunica intima is the innermost layer is composed of a single layer of endothelial cells that
provides a smooth surface for blood flow and is crucial for vascular homeostasis. It
consists of the epithelium, the innermost layer composed of a single layer of flattened
endothelial cells that form a smooth lining that reduces friction as blood flows through
the vessel followed by a subendothelial layer that consists of loose connective tissue that
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provides structural support and the internal elastic lamina, a well-defined layer of elastic
fibers that provides flexibility and allows the vessel to stretch and recoil.

Tunica Media is the middle layer that is the thickest and contains smooth muscle cells and
elastic fibers. This layer is responsible for the contractility and elasticity of the artery,
allowing it to expand and recoil with each heartbeat. It consists of smooth muscle cells
arranged in concentric layers that control the diameter of the artery through contraction
and relaxation, which regulates blood pressure and flow. Elastic fibers of tunica media are
interspersed among the smooth muscle cells and provide the artery with the ability to
stretch and recoil with the pulsatile flow of blood followed by the external elastic lamina
present in larger arteries for additional elasticity.

Tunica adventita, also known as the tunica externa is the outer layer composed of
connective tissue that provides structural support and protection to the artery. Its
outermost layer is made up of connective tissue, primarily collagen fibers, which anchor
the artery to surrounding tissues and provide structural integrity. Vasa vasorum are small
blood vessels that supply blood to the walls of large arteries and nervi vasorum are nerves
that innervate the blood vessel wall, particularly influencing the smooth muscle tone
(Silverthorn, 2020).

Arteries can be categorized into several types based on their size, structure, and function,
each playing a unique role in maintaining hemodynamic stability. Elastic arteries are the
largest arteries in the body, including the aorta and its major branches, such as the
brachiocephalic, common carotid, and subclavian arteries. These arteries have a
substantial amount of elastic tissue in their walls, particularly in the tunica media, which
allows them to stretch and recoil with each heartbeat. This elasticity is vital for dampening
the pulsatile nature of blood flow generated by the heart and ensuring a smooth,
continuous flow of blood throughout the arterial system. Key functions of elastic arteries
include acting as a pressure reservoir by expanding to accommodate the surge of blood
while, during diastole, they recoil, maintaining pressure and propelling blood forward,
followed by pressure dampening by smoothing out the pressure variations from the heart,
providing a more consistent blood flow to the smaller arteries and arterioles.

The brachiocephalic, common carotid, and subclavian arteries are responsible for
delivering blood to the head, neck, and upper limbs, playing a crucial role in maintaining
adequate circulation to these vital areas. Each of these arteries has distinct anatomical
features, specific functions, and important clinical relevance. The brachiocephalic artery,
also known as the brachiocephalic trunk, is one of the three major branches that originate
from the aortic arch. It is unique in that it is the only one of these branches to bifurcate,
providing a critical blood supply pathway to the right side of the head and neck and the
right upper limb. The brachiocephalic artery travels upward until it divides into the right
common carotid artery and the right subclavian artery. This bifurcation occurs at the level
of the right sternoclavicular joint. The common carotid arteries are vital for supplying
blood to the head and neck. There are two common carotid arteries, the right common
carotid artery, which originates from the brachiocephalic artery, and the left common
carotid artery, which directly branches off the aortic arch. The subclavian arteries are
major arteries that supply blood to the upper limbs. The right subclavian artery branches
off from the brachiocephalic artery, while the left subclavian artery directly originates
from the aortic arch.



Muscular arteries are medium-sized arteries that distribute blood to specific organs and
tissues. Examples include the radial, femoral, and coronary arteries. Unlike elastic
arteries, muscular arteries have a thicker tunica media composed mainly of smooth
muscle cells, which gives them greater control over blood flow through vasoconstriction
and vasodilation. Their key functions include blood distribution as they direct blood to
various parts of the body based on the body’s needs and regulation of blood flow and
pressure as their muscular walls can contract or relax to regulate the amount of blood
flowing to different tissues, maintaining systemic blood pressure.

The coronary arteries are a unique subset of muscular arteries with the crucial task of
supplying blood to the heart muscle, or myocardium. Their structure and function are
finely adapted to meet the heart’s high metabolic demands, ensuring that the myocardium
receives a continuous and adequate supply of oxygen and nutrients. Given the heart’s role
as the central pump of the circulatory system, maintaining the health and functionality of
the coronary arteries is essential for overall cardiovascular health. The coronary arteries
are strategically positioned to optimize blood delivery to the heart muscle (Figure 4).
They originate from the base of the aorta, just above the aortic valve, ensuring they
receive the freshest, most oxygen-rich blood immediately after it is pumped from the left
ventricle. The left coronary artery (LCA) quickly bifurcates into two major branches, the
left anterior descending (LAD) artery that travels down the front of the heart, supplying
blood to the front and bottom of the left ventricle and the front of the septum, the
circumflex artery that encircles the heart muscle, providing blood to the outer side and
back of the heart. The right coronary artery (RCA) runs along the right side of the heart
and primarily supplies the right atrium, right ventricle, and parts of the bottom portion of
both the left ventricle and the septum and branches into the posterior descending artery
(PDA) which supplies the back of the heart. The coronary arteries are integral to the
heart’s performance. By providing a continuous supply of oxygen and essential nutrients,
they ensure the myocardium maintains its vigorous contractile function. This is especially
critical during periods of increased physical activity when the heart's demand for oxygen
escalates (Silverthorn, 2020).
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Figure 4. Coronary arteries (Online resources 3)

Peripheral arteries encompass all arteries outside the heart and brain, with a primary role
in supplying blood to the limbs and peripheral organs. These arteries are crucial for
maintaining the health and functionality of various tissues throughout the body. Key
examples of peripheral arteries include the femoral, popliteal, and iliac arteries, each of
which plays a vital role in the vascular system. Peripheral arteries are characterized by
their extensive branching and distribution, ensuring comprehensive blood supply to the
extremities and peripheral organs. The femoral artery is a major blood vessel in the thigh
and the main arterial supply to the lower limb. It continues from the external iliac artery
and branches into the deep femoral artery, which supplies blood to the deep structures of
the thigh. The femoral artery continues with the popliteal artery which runs through the
popliteal fossa (behind the knee) and branches into the anterior and posterior tibial
arteries, supplying blood to the lower leg and foot. The common iliac arteries branch from
the aorta and further divide into the internal and external iliac arteries. The internal iliac
arteries supply the pelvic organs, while the external iliac arteries continue as the femoral
arteries to supply the lower limbs.

Peripheral arteries are essential for delivering oxygenated blood to tissues throughout
the body, supporting various physiological functions necessary for maintaining
homeostasis and overall health.

Arteries branch into smaller vessels known as arterioles, which regulate blood flow into
capillary beds through the contraction and relaxation of smooth muscle cells. This process
is crucial for controlling blood pressure and directing blood flow to specific tissues based
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on their metabolic needs. They have a thin tunica media composed of one or two layers of
smooth muscle cells.

2.2. Atherosclerosis

Atherosclerosis of the coronary arteries is a chronic, progressive condition characterized
by the buildup of plaque within the arterial walls. Coronary artery disease (CAD), more
specifically coronary atherosclerosis (CATS), is one of the leading causes of death
worldwide, accounting for approximately 17.9 million deaths annually (Su et al,, 2023). It
is a condition marked by the accumulation of plaque on the artery wall, which is made up
of fat, cholesterol, calcium, and other components. This causes arteries to gradually
narrow, eventually occluding and preventing blood flow (Libby et al.,, 2011) (Figure 5).
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Figure 5. Atherosclerotic progression and thickening of the artery (Hirahatake et al, 2021)

The most prevalent signs and symptoms of CAD are chest pain and discomfort, which are
medically known as angina (Shao et al., 2020). Excessive plaque buildup in the arteries,
which obstructs blood flow to the heart and the rest of the body, causes the angina.
Reduced oxygen and nutrition delivery as a result of this insufficient blood flow runs the
risk of causing tissue damage and, in extreme circumstances, even death (Ahmed, 2016).
Obesity, physical inactivity, an unhealthy diet, smoking, a family history of CAD or heart
disease, and comorbidities such as diabetes, high blood pressure, and elevated blood
cholesterol levels are all risk factors contributing to coronary artery disease (Yusuf et al.,
2020). The significance of early detection and prevention techniques is emphasized by
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the fact that many of these characteristics can be altered by alterations in lifestyle and
medical treatment (Arnett et al., 2019). Aside from causing partial or total blockage of
arteries, plaque can separate from the artery wall and flow into the bloodstream, resulting
in an acute thrombotic event (Bentzon et al., 2014). This can lead to a heart attack or a
stroke, which both have high morbidity and death rates (Benjamin et al., 2018). It is
essential to comprehend the relevance of factors influencing the evolution of
atherosclerotic lesions in order to properly treat and prevent future cardiac events.
Inflammation, endothelial dysfunction, and oxidative stress are a few of the mechanisms
that have been linked to the development of atherosclerosis in studies (Higashi, 2022). It
has been demonstrated that pharmaceutical therapies that target these processes, such
as statins and antihypertensive drugs, lower the incidence of CAD-related events
(Bertrand et al,, 2016). In addition, crucial elements of CAD management and prevention
include stress management, regular physical activity, a heart-healthy diet, and quitting
smoking (Westland et al,, 2020). These adjustments can enhance cardiovascular health
overall, lower the risk of future cardiac events, and slow the development of
atherosclerosis. Successful treatment and prevention of coronary artery disease depend
on an understanding of the variables influencing the development of atherosclerotic
plaques. It is possible to lessen the overall burden of CAD and enhance patient outcomes
by focusing on modifiable risk factors and the underlying processes of atherosclerosis. It
is well known that atherosclerosis occurs because of an interplay of a variety of factors.
The correlations of these factors to atherosclerosis is explored computationally in order
to aid physicians in treating the exact cause of CATS, however research has found that
most commonly several factors influence characteristics and hence optimal treatment
strategy in the case of arterial plaque (Lechner et al,, 2019). For this reason, it is crucial to
apply a multiscale approach to analysis of risk factors leading to CATS, starting from cells
that make up the coronary arteries, through tissues to the entire organism and its
environment (Devinder et al., 2020). Pinpointing the most significant combination of risk
factors for CATS development and treatment prognosis would enable physicians to target
the disease with optimal treatment strategy and enable better patient outcomes.
The development of atherosclerotic plaques in the coronary arteries typically progresses
through the following stages (Rafieian-Kopaei et al., 2014) (Figure 6):

¢ endothelial dysfunction

e lipid accumulation and foam cell formation

e plaque progression

e plaque destabilization and rupture

e thrombus formation and occlusion
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Figure 6. Atherosclerosis progression (Bardin, 2022)

The initial step in atherosclerosis is endothelial injury, which can be caused by factors
such as hypertension, smoking, hyperlipidemia, and diabetes. This injury leads to
increased permeability and adhesion of leukocytes to the endothelium. Low-density
lipoprotein (LDL) cholesterol penetrates the damaged endothelium and accumulates in
the intima. Oxidized LDL (oxLDL) is particularly atherogenic and triggers an inflammatory
response. Monocytes adhere to the endothelium, migrate into the intima, and differentiate
into macrophages. These macrophages ingest oxLDL and transform into foam cells,
creating fatty streaks. Smooth muscle cells migrate from the media to the intima,
proliferate, and produce extracellular matrix components such as collagen and elastin.
This leads to the formation of a fibrous cap over the lipid core, forming a stable plaque.
Plaques can become unstable due to continuous inflammation and enzymatic degradation
of the fibrous cap. If the cap ruptures, it exposes the underlying thrombogenic material,
leading to platelet aggregation and thrombus formation. Thrombus formation can
partially or completely occlude the coronary artery, leading to acute coronary syndromes
such as unstable angina, non-ST-segment elevation myocardial infarction (NSTEMI), or
ST-segment elevation myocardial infarction (STEMI) (Rafieian-Kopaei et al., 2014).

Atherosclerosis of the peripheral arteries, often referred to as peripheral artery disease
(PAD), is a chronic condition characterized by the accumulation of plaques within the
arterial walls, leading to narrowed and hardened arteries that impair blood flow to the
limbs. This condition primarily affects the arteries that supply the legs and can result in
significant morbidity. A comprehensive understanding of the pathophysiology, clinical
manifestations, diagnostic approaches, and treatment strategies for peripheral artery
atherosclerosis is essential for effective management and prevention of severe
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complications. Same as with CATS, PAD involves complex interactions among lipid
metabolism, endothelial dysfunction, inflammatory responses, and genetic
predispositions following the same pattern of plaque progression with the difference of
the effect of thrombus formation, where in PAD it can partially or completely occlude the
artery, leading to critical limb ischemia or acute limb ischemia, which can cause severe
tissue damage (Signorelli et al., 2020).

2.3. Artery biomechanics

The mechanical properties of arteries are determined by their composition and structure,
allowing them to perform essential functions in the cardiovascular system.
Understanding artery biomechanics is crucial for diagnosing and managing
cardiovascular diseases such as hypertension, atherosclerosis, and aneurysms. Changes
in arterial compliance and stiffness are early indicators of vascular dysfunction and can
predict cardiovascular risk (Carpenter et al., 2020).

Arteries are highly elastic vessels due to the presence of elastic fibers in the tunica media,
particularly in large elastic arteries such as the aorta and pulmonary arteries. This
elasticity allows arteries to expand and recoil in response to changes in blood pressure,
converting pulsatile flow from the heart into a steady flow through smaller vessels.
Arterial compliance (C) is the ability of arteries to stretch and accommodate changes in
blood volume without a significant increase in pressure. It is calculated as:

AV Eq.1

C=—
AP

Where:
e AV is change in blood volume
e AP is change in pressure

Distensibility refers to the ability of arteries to stretch in response to pressure changes. It
is influenced by the elastic fibers in the tunica media and determines how much the artery
can expand in response to each pulse of blood ejected from the heart. The distensibility
coefficient (DC) is defined as:

AD Eq.2

DC=55ap

Where:
e AD is change in arterial diameter
e D is baseline arterial diameter
e AP is change in pressure (usually the pulse pressure)

Arteries exhibit viscoelastic behavior, meaning they demonstrate both elastic (reversible
deformation) and viscous (time-dependent deformation) properties. The viscoelasticity
of arteries helps them adapt to different flow conditions and resist damage from pressure
fluctuations over time (Carpenter et al., 2020).

Arteries contribute significantly to hemodynamics, the study of blood flow dynamics
within the cardiovascular system. Arterial pressure-volume (P-V) relationships describe
how changes in arterial pressure affect arterial volume. The compliance of arteries
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influences these relationships, with stiffer arteries showing less change in volume for a
given change in pressure. Arteries transmit the pulsatile pressure wave generated by each
heartbeat (systole) from the heart to the periphery. Pulse wave velocity (PWV) is a
measure of how quickly this wave travels along the arterial tree and is influenced by
arterial stiffness. Increased PWV is associated with aging and vascular disease. Arteries
act as a Windkessel, or pressure reservoir, dampening the pulsatile nature of blood flow.
This effect is facilitated by the elasticity of large arteries, which store energy during
systole and release it during diastole to maintain continuous flow (Carpenter et al., 2020).

Arterial biomechanics plays a critical role in the initiation, progression, and clinical
consequences of atherosclerosis. Mechanical forces such as shear stress and mechanical
stretch influence endothelial function, arterial remodeling, and the development of
atherosclerotic plaques (Carpenter et al, 2020). Understanding these biomechanical
factors provides insights into disease mechanisms and informs strategies for preventing

and managing cardiovascular diseases associated with atherosclerosis (Figure 7).
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Figure 7. Aterial biomechanics (Bacigalupi et al.,, 2024)

Shear stress (1) is the frictional force exerted by blood flow on the endothelial cells lining
the arterial wall. It is calculated using the formula:
du Eq. 3
T=1n-—
dy

Where:
e 7 isthe blod viscosity

o Z—; is the velocity gradient perpendicular to the vessel wall (rate of change of blood

flow velocity with respect to distance from the wall)

Normal, laminar blood flow generates shear stress that promotes endothelial health and
function. However, disturbed or turbulent flow patterns, such as those occurring at
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arterial bends or bifurcations, can lead to low and oscillatory shear stress. These
disturbed flow patterns are associated with endothelial dysfunction and the initiation of
atherosclerosis . While low shear stress reduces the production of nitric oxide (NO) and
other protective factors by endothelial cells, promoting inflammation and leukocyte
adhesion to the arterial wall, oscillatory shear stress contributes to the activation of
endothelial cells, increased permeability of the endothelium, and enhanced uptake of
lipids into the arterial wall (Carpenter et al., 2020).

Arterial biomechanics also involves mechanical stretch, particularly in regions where
arteries experience higher pressures or pulsatile flow. Chronic exposure to increased
mechanical stretch can lead to arterial remodeling, characterized by changes in arterial
wall thickness, diameter, and composition. The pulsatile nature of blood flow subjects
arteries to cyclic stretch during each cardiac cycle. This cyclic stretch influences vascular
smooth muscle cell phenotype, extracellular matrix synthesis, and overall arterial wall
structure (Carpenter et al., 2020).

2.4. Diagnosis and treatment of atherosclerosis

Diagnosis and treatment of atherosclerosis in these critical arteries are essential for
preventing complications such as myocardial infarction (heart attack) and stroke.
Diagnosis often begins with a thorough clinical evaluation, including assessing the
patient's medical history, risk factors (e.g., smoking, hypertension, diabetes), and
symptoms such as chest pain (angina) or transient neurological symptoms suggestive of
stroke.

Imaging is the most accurate diagnostic modality for atherosclerosis and imaging
modalities used depend on the artery affected by atherosclerosis. Coronary angiography
and coronary computed tomography (CTA) are the golden standard and it’s alternative
for diagnosing coronary artery atherosclerosis respectively. Coronary angiography is
considered the gold standard for evaluation of coronary artery disease (CAD). It is an
invasive procedure involvung insertion of a catheter into a blood vessel (typically the
femoral or radial artery) followed by injecting a contrast dye to outline the coronary
arteries with X-ray imaging thus providing high-resolution images that reveal the
presence, location, and severity of coronary artery narrowing or blockages (stenosis). It
is essential for guiding decisions on interventions such as percutaneous coronary
intervention (PCI) or coronary artery bypass grafting (CABG) in patients with significant
CAD. Coronary CTA has emerged as a valuable non-invasive imaging technique for
evaluating coronary artery anatomy and detecting plaque buildup and stenosis. It utilizes
computed tomography (CT) technology to acquire detailed, three-dimensional images of
the coronary arteries without the need for invasive procedures. Coronary CTA is
particularly useful for assessing patients with suspected CAD, providing comprehensive
visualization of plaque characteristics and coronary artery morphology. It plays a crucial
role in risk stratification and treatment planning, especially in patients with equivocal
stress test results or atypical symptoms (Robert et al., 2019).

Optical cogerence tomography (OCT) is an intravascular imaging technique that uses
near-infrared light to create high-resolution cross-sectional images of the arterial wall.
Incorporating OCT alongside other imaging modalities enhances the diagnostic accuracy
and therapeutic management of atherosclerosis, providing clinicians with comprehensive
insights into arterial structure and pathology. Its ability to visualize fine details within the
arterial wall makes OCT a valuable tool in both research and clinical practice for
optimizing patient care and outcomes. It provides detailed visualization of arterial
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morphology, including plaque characteristics such as thickness, composition (lipid-rich
or fibrous), and presence of microcalcifications. It offers superior resolution compared to
other imaging modalities, enabling precise assessment of plaque morphology and
characteristics. This information aids in determining the vulnerability of plaques to
rupture and guiding treatment strategies. Additionally, OCT helps in differentiating stable
from unstable plaques, thereby assisting in risk stratification for future cardiovascular
events. OCT is particularly useful during coronary interventions, such as percutaneous
coronary intervention (PCI), to assess stent placement and optimize procedural
outcomes. It allows clinicians to visualize stent apposition and expansion, detect edge
dissections, and evaluate residual plaque burden. OCT-guided interventions contribute to
improved procedural success rates and reduced complications (Prati et al., 2010, Bouma
etal, 2017).

When carotid atherosclerosis is suspected, either carotid ultrasound or -carotid
angiography are employed as imaging strategies. Carotid ultrasound is a non-invasive
imaging modality that utilizes high-frequency sound waves to assess blood flow dynamics
and detect abnormalities within the carotid arteries. It is particularly effective in
evaluating carotid artery stenosis, a significant risk factor for ischemic stroke. Carotid
ultrasound can visualize plaque formation, measure intima-media thickness (IMT) - an
early marker of atherosclerosis, and assess blood flow velocities using Doppler
ultrasound. This imaging technique is invaluable for identifying patients at high risk of
stroke and guiding decisions on further management, including medical therapy or
surgical intervention (Polak, 2001). Similar to coronary angiography, carotid angiography
involves the insertion of a catheter into a blood vessel (typically the femoral artery) and
the injection of contrast dye to visualize the carotid arteries under X-ray imaging (Jackson
and Meaney, 2015, Sonka et al,, 2000). This invasive procedure provides detailed images
of the carotid artery anatomy and allows for precise assessment of narrowing or
blockages (stenosis). Carotid angiography is typically reserved for cases where non-
invasive imaging results are inconclusive or when surgical intervention, such as carotid
endarterectomy or carotid artery stenting, is being considered. It provides critical
information for planning surgical procedures and optimizing patient outcomes in
individuals with significant carotid artery disease (Pizzolato et al., 2014).

The diagnostic process for PAD typically begins with a thorough clinical assessment.
Healthcare providers evaluate the patient's medical history, including risk factors such as
smoking, diabetes, hypertension, hyperlipidemia, and family history of cardiovascular
disease (Peach et al., 2012). Symptoms suggestive of PAD include:

e Intermittent Claudication: Pain, cramping, or fatigue in the legs during physical
activity that resolves with rest.

e Rest Pain: Pain in the feet or toes that worsens at night and improves when
dangling the legs over the edge of the bed.

¢ Non-healing Wounds: Ulcers or sores on the legs or feet that do not heal properly.

e Coolness or Pallor: Reduced temperature or color changes in the affected limb
compared to the unaffected limb.

The ankle-brachial index (ABI) serves as the first tool in the diagnosis and assessment of
peripheral artery disease (PAD), a condition where arteries supplying blood to the limbs

become narrowed or blocked due to atherosclerosis (Crawford et al., 2016). This simple
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yet effective test compares blood pressure measurements taken at the ankles and arms,
offering valuable insights into the extent of arterial obstruction and consequent reduction
in blood flow to the legs. During the ABI test, a healthcare provider uses a Doppler
ultrasound probe to measure systolic blood pressure in both arms and both ankles. This
non-invasive procedure involves applying the probe to these areas to detect and record
blood flow sounds, which are indicative of arterial pressure. The ABI is calculated by
dividing the highest systolic blood pressure measured at the ankle by the highest systolic
blood pressure measured in either arm. A normal ABI falls within the range of 0.90 to 1.30,
indicating relatively unobstructed blood flow to the lower extremities. Conversely, an ABI
lower than 0.90 suggests the presence of PAD, with severity categorized as follows:

e An ABI between 0.70 and 0.90 typically indicates mild PAD, where arterial
narrowing may cause intermittent claudication (leg pain during activity).

e An ABI ranging from 0.40 to 0.70 signifies moderate PAD, characterized by more
pronounced symptoms and greater impairment in blood flow.

e An ABI less than 0.40 indicates severe PAD, where critical limb ischemia may
occur, potentially leading to tissue damage and non-healing wounds.

Interpreting ABI results allows healthcare providers to tailor treatment plans accordingly,
aiming to alleviate symptoms, prevent disease progression, and reduce the risk of
complications such as limb amputation. Regular monitoring of ABI over time helps track
disease progression and assess the effectiveness of therapeutic interventions, including
lifestyle changes, medications, and surgical procedures aimed at improving blood flow
and enhancing quality of life for individuals with PAD (Casey et al., 2019).

Advanced imaging techniques play a crucial role in the comprehensive evaluation and
management of peripheral artery disease (PAD), providing detailed insights into arterial
anatomy, blood flow dynamics, and the extent of arterial narrowing or occlusion. These
imaging modalities are essential for confirming diagnosis, guiding treatment decisions,
and assessing therapeutic outcomes. Duplex ultrasound combines traditional ultrasound
with Doppler ultrasound technology to visualize blood flow in the arteries and detect
abnormalities such as stenosis or occlusions. During the procedure, high-frequency sound
waves are transmitted through tissues, and the echoes are captured to create images of
blood vessels. Doppler ultrasound specifically measures the speed and direction of blood
flow, allowing healthcare providers to assess the severity and location of arterial
narrowing in real-time. Duplex ultrasound is particularly advantageous for evaluating
PAD in the lower extremities, where it can accurately identify the presence of
atherosclerotic plaques, measure blood flow velocities, and assess the hemodynamic
significance of arterial lesions (Eiberg et al., 2010).

CTA is a non-invasive imaging technique that utilizes computed tomography CT
technology to generate detailed, three-dimensional images of the arteries. It involves the
intravenous injection of contrast dye, which highlights the vascular structures and
enables visualization of arterial anatomy with high spatial resolution. CTA is highly
effective in identifying areas of stenosis, occlusion, or plaque buildup in patients
suspected of having PAD. It provides comprehensive anatomical information that helps
healthcare providers plan interventions such as angioplasty or stenting, assess collateral
circulation, and evaluate the suitability for surgical revascularization procedures
(Fleischmann et al., 2006).
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Magnetic resonance angiography (MRA) utilizes magnetic resonance imaging (MRI)
technology to create detailed images of blood vessels without the use of ionizing radiation.
MRA is particularly advantageous for evaluating complex arterial anatomy, including
tortuous vessels or regions with calcified plaques, which may be challenging to visualize
with other imaging modalities. MRA provides multiplanar images that allow for precise
assessment of arterial stenosis, occlusion, and collateral circulation in patients with PAD.
It is especially beneficial for individuals with contraindications to iodinated contrast
agents used in CTA, such as those with renal insufficiency or allergies (Nelemans et al,,
2000).

These advanced imaging modalities complement clinical evaluation and non-invasive
tests like the ankle-brachial index (ABI), enhancing the accuracy of PAD diagnosis and
facilitating tailored treatment strategies. By providing detailed anatomical and functional
information, duplex ultrasound, CTA, and MRA enable healthcare providers to make
informed decisions regarding medical management, endovascular interventions, or
surgical procedures aimed at improving blood flow to the affected limbs. Regular
utilization of these imaging techniques also supports longitudinal monitoring of disease
progression and therapeutic efficacy, ensuring optimal care and outcomes for patients
with PAD.

2.5. Biochemical and genetic testing for atherosclerosis

Biochemical and genetic testing for atherosclerosis supports a personalized approach to
cardiovascular risk assessment and management (Deric et al., 2008, Paynter et al., 2016).
Biochemical tests measure specific markers in the blood associated with inflammation,
lipid metabolism, and endothelial dysfunction, all of which are key contributors to the
development and progression of atherosclerosis (Medina-Leyte et al, 2021). A lipid
profile measures levels of cholesterol, triglycerides, and lipoproteins in the blood.
Elevated levels of low-density lipoprotein cholesterol (LDL-C) are a major risk factor for
atherosclerosis, as LDL particles can infiltrate arterial walls and initiate plaque formation.
Conversely, high levels of high-density lipoprotein cholesterol (HDL-C), often referred to
as "good cholesterol," are associated with reduced cardiovascular risk. The ratio of total
cholesterol to HDL-C is also informative, with higher ratios indicating increased risk
(Bhatt, 2018, Toth, 2005). Markers such as C-reactive protein (CRP) and interleukin-6 (IL-
6) indicate systemic inflammation, which contributes to endothelial dysfunction and
promotes atherosclerosis progression. Elevated levels of CRP, in particular, have been
linked to increased cardiovascular risk independent of traditional risk factors. Endothelial
dysfunction precedes atherosclerosis development (Held et al., 2017). Biomarkers such
as soluble adhesion molecules (e.g., SICAM-1, sVCAM-1) and endothelin-1 reflect impaired
endothelial function, facilitating leukocyte adhesion, vascular smooth muscle cell
proliferation, and plaque formation (Ugurlu et al., 2013).

Genetic testing assesses inherited variations that influence susceptibility to
atherosclerosis and cardiovascular disease. While not routinely performed in clinical
practice, genetic testing provides valuable insights into individual risk profiles and can
guide personalized preventive strategies (Laan et al, 2018). Familial
hypercholesterolemia FH is a genetic disorder characterized by high LDL-C levels from
birth, significantly increasing the risk of premature atherosclerosis and cardiovascular
events (Khera and Hegele, 2020). Genetic testing can identify mutations in genes such as
LDLR (LDL receptor), APOB (apolipoprotein B), or PCSK9 (proprotein convertase
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subtilisin/kexin type 9), which disrupt normal lipid metabolism and contribute to FH
(Meshkov et al,, 2021). Various single nucleotide polymorphisms (SNPs) associated with
lipid metabolism, inflammation, and endothelial function have been linked to
atherosclerosis risk. Examples include SNPs in genes encoding proteins involved in
cholesterol transport (e.g., ABCA1)(Fitzgerald et al., 2010), inflammation (e.g., IL-6)
(Schieffer et al., 2004), and oxidative stress pathways (Batty et al., 2022). Genetic risk
scores (GRS) integrate multiple genetic variants associated with cardiovascular risk into
a single score. They provide a quantitative assessment of genetic susceptibility to
atherosclerosis and can stratify individuals into high, moderate, or low-risk categories.
GRS are increasingly used in research and may eventually inform clinical decision-making
regarding preventive therapies and lifestyle interventions (Christiansen et al., 2020).

2.6. Treatment of atherosclerosis

Effective management strategies aim to halt CATS progression, reduce plaque burden,
prevent complications such as myocardial infarction and stroke, and improve overall
cardiovascular health. Initially, patients are advised to make lifestyle modifications that
include:

e Adopting a heart-healthy diet low in saturated fats, trans fats, and cholesterol
while emphasizing fruits, vegetables, whole grains, and lean proteins can lower
LDL cholesterol levels and reduce inflammation. The Mediterranean diet, rich in
olive oil, nuts, and fish, has shown particular benefit in reducing cardiovascular
risk.

e Engaginginregular physical activity improves cardiovascular fitness, lowers blood
pressure, promotes weight loss, and enhances overall vascular health. Aerobic
exercises such as brisk walking or cycling are recommended, aiming for at least
150 minutes per week.

e Quitting smoking significantly reduces cardiovascular risk by improving
endothelial function, decreasing inflammation, and lowering the formation of
atherosclerotic plaques.

Pharmacotherapy for CATS includes:

e Statins as first-line medications that lower LDL cholesterol levels and stabilize
plaques. High-intensity statin therapy (e.g., atorvastatin, rosuvastatin) is
recommended for most patients with atherosclerosis to achieve LDL-C reduction
goals (Lee et al,, 2018)

e Antiplatelet agents like aspirin and other antiplatelet medications (e.g,
clopidogrel) reduce the risk of thrombosis and cardiovascular events in patients
with established atherosclerosis. Dual antiplatelet therapy may be considered in
selected high-risk patients (Patrono et al., 2017)

e Antihypertensive drugs for controlling blood pressure with medications such as
ACE inhibitors, angiotensin Il receptor blockers (ARBs), beta-blockers, or diuretics
helps prevent plaque progression and reduces cardiovascular risk by maintaining
optimal blood pressure levels (Nissen et al., 2004)

e Antithrombotic therapy for selected patients with high-risk features such as recent
myocardial infarction or atrial fibrillation, anticoagulant therapy (e.g., warfarin,
direct oral anticoagulants) may be recommended to prevent thrombotic events
(Parker and Storey, 2021)
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In cases where lifestyle adjustments and pharmacotherapy fail, interventional and
surgical procedures are advised and employed. Angioplasty is a procedure to widen
blocked arteries, involves inserting a catheter into the site of blockage using imaging
techniques like angiography. Before using drug-coated balloons (DCB) or drug-eluting
stents (DES), pre-dilation with a percutaneous transluminal angioplasty (PTA) balloon
catheter is recommended (Unverdorben et al., 2009). For DCB, the PTA balloon should be
1mm smaller than the artery diameter, while for DES, it should match the artery's nominal
diameter. The pressure applied should stay below the balloon's rated burst pressure. If
high stenosis rates are present, a two-step pre-dilation using smaller then larger balloons
is suggested. The balloon's diameter and length should match the vessel's size and lesion
length respectively, with the total drug dose not exceeding 34,845ug. If residual stenosis
remains above 50% after DCB use, stent placement is con-sidered. A successful procedure
leaves <50% residual stenosis (non-stented subjects) or <30% (stented subjects). When
deploying DES, correct stent positioning is crucial. The stent should be slowly deployed,
aiming for an initial pressure that achieves a stent-to-vessel diameter ratio of about 1.1,
held for 30 seconds. DES and DCB are two innovative medical technologies developed for
the treatment of vascular diseases, including CAD and PAD. Both devices operate on the
principle of lo-calized drug delivery to inhibit neointimal hyperplasia and restenosis,
issues commonly associated with bare-metal stent implantation (Grintzig et al., 1978,
Abdullah et al,, 2018, Lindquist and Schramm, 2018). DES have become a cornerstone of
percutaneous coronary intervention (PCI) for the treatment of CAD since their
introduction in the early 2000s (Moses et al., 2003). They are composed of a metallic
scaffold coated with an antiprolif-erative drug and a polymer carrier material, designed
to slowly release the drug over sev-eral weeks to. The drugs used in DES, such as paclitaxel
or sirolimus, inhibit the growth of smooth muscle cells to reduce restenosis risk (Moses
et al.,, 2003). Due to their effective-ness in the treatment of CAD, DES have also been used
for PAD. Successive genera-tions of DES have aimed to improve upon earlier designs'
limitations, with a focus on op-timizing drug delivery, reducing thrombosis risk, and
enhancing biocompatibility (Bangalore et al., 2013). Despite initial concerns about late
stent thrombosis (LST) and delayed endothelial heal-ing with first-generation DES, newer
versions have demonstrated improved safety and ef-ficacy outcomes, with lower rates of
LST and comparable or superior reductions in ISR (Bangalore et al., 2013). However, DES
use comes with risks, including the prolonged presence of a foreign object in the artery,
potentially increasing blood clot risk, and concerns about long-term safety(Cornelissen
and Vogt, 2019). On the other hand, DCB, a more recent technology, consist of a balloon
catheter coated with an antiproliferative drug, which is released during balloon inflation
to treat vascular diseases (Byrne et al., 2014). They have been utilized primarily in PAD
treatment and have shown promising results in reducing restenosis rates and improving
clinical outcomes. DCB deliver their drug load during balloon inflation, with the drug
typically com-bined with a carrier to facilitate transfer and retention in the arterial wall
(Hossainy et al., 2008). In clinical trials, DCB have been found to be as effective as DES in
treating lesions, with a lower risk of restenosis and less need for repeat procedures. DCB
are especially effective in treating PAD, particularly in femoropopliteal and below-the-
knee lesions and have been investigated as an alternative to DES in CAD treatment
(Cornelissen etal., 2019). While DCB have several advantages over DES, such as being less
invasive as they do not require permanent im-plantation, they also come with their own
set of limitations. These include the potential for uneven drug coating, leading to
incomplete drug delivery, and risks of complications like dissection or perforation. Both
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DES and DCB represent significant advancements in the treatment of vascular diseases.
They share a common goal of localized drug delivery to inhibit restenosis but each has its
unique sets of advantages and disadvantages. The choice between DES and DCB may
depend on the specific characteristics of the patient and the disease, including the severity
and location of the lesions, the patient's risk profile, and other factors.

Comparative studies on DCB and DES in vascular disease treatment reveal no signif-icant
difference in major adverse cardiovascular events at a one-year follow-up, according to
Katsanos et al. (Katsanos et al., 2018). Yet, DCB were found to be associated with a lower
risk of target le-sion revascularization (TLR) than DES. A two-year follow-up study by
Tepe et al. also found no significant difference in the rate of primary patency, but DCB had
a lower rate of clinically-driven TLR (Tepe et al., 2015). Further research indicates DCB
have a lower restenosis risk and TRL than DES a year post-angioplasty, and they are more
cost-effective when treating femoropopliteal artery disease due to their lower TLR and
overall cost (Alfonso et al., 2018).

Alternatively, surgical revascularization and carotid endarterectomy (CEA) are employed.
Surgical revascularization is a crucial intervention for patients with advanced coronary
artery disease (CAD), where the buildup of atherosclerotic plaque significantly restricts
blood flow to the heart muscle (Slovut et al., 2012). This procedure, known as Coronary
Artery Bypass Grafting (CABG), involves creating bypass grafts using healthy blood
vessels sourced from elsewhere in the body, such as the saphenous vein or internal
mammary artery (Alexander and Smith, 2016). These grafts are used to bypass narrowed
or blocked coronary arteries, restoring proper blood flow to the heart muscle. CEA is
typically recommended for symptomatic patients with severe carotid artery stenosis
(usually greater than 70%) who have experienced transient ischemic attacks (TIAs) or
strokes related to carotid artery disease. CEA involves surgically removing the buildup of
atherosclerotic plaque from the inner lining of the carotid artery. This plaque removal
reduces the risk of stroke by restoring proper blood flow to the brain. By removing the
plaque, CEA reduces the risk of embolic stroke caused by plaque rupture and thrombus
formation within the carotid artery (Alexander et al.,, 2016).

Laser or rotational atherectomy are advanced interventional techniques employed in the
treatment of peripheral artery disease and coronary artery disease when traditional
methods like angioplasty or stenting may not be sufficient due to particularly dense or
complex plaque formations within the arterial walls (Tomey et al, 2014). Laser
atherectomy is particularly effective in cases where plaque has become calcified or
otherwise resistant to traditional angioplasty techniques. It utilizes specialized catheters
equipped with laser fibers to target and vaporize plaque deposits within the arteries. The
procedure begins with the insertion of a catheter into the affected artery under
fluoroscopic guidance. Once positioned, the laser is activated, emitting high-energy light
pulses that vaporize the hardened plaque while sparing the arterial walls. The vaporized
debris is removed from the bloodstream naturally. By effectively removing dense plaque,
laser atherectomy improves blood flow through the treated artery, thereby alleviating
symptoms such as claudication (leg pain) in PAD patients or angina in CAD patients.
Compared to traditional surgical interventions, laser atherectomy minimizes trauma to
the artery and surrounding tissues, which can expedite recovery times and reduce
complications (Tsutsui et al., 2021). Rotational atherectomy is specifically effective in
cases where plaque has become heavily calcified, making it difficult to compress with a
balloon during standard angioplasty procedures. It involves the use of a specialized
catheter equipped with a rotating burr at its tip. This burr, powered by a high-speed
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motor, mechanically abrades and removes plaque deposits from within the arterial
lumen. The procedure is performed similarly to angioplasty, with the catheter inserted
through a small incision in the groin or wrist and advanced to the site of the arterial
blockage under fluoroscopic guidance. By mechanically ablating calcified plaque,
rotational atherectomy restores arterial patency and improves blood flow to the affected
region. Often used in conjunction with balloon angioplasty and stent placement, rotational
atherectomy helps prepare the vessel for optimal stent deployment by creating a smooth
arterial surface (Gupta et al., 2019).
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3. Bioengineering in cardiovascular medicine

3.1. Finite element analysis for atherosclerosis

Finite element modeling of atherosclerosis plays a crucial role in understanding the
biomechanical behavior of arterial walls under pathological conditions (Filipovic et al,,
2011, Filipovic, 2020, Filipovic et al., 2017, Filipovic et al., 2013). Computational models
based on finite element analysis provide a powerful tool to simulate and analyze the
complex mechanical interactions that occur within these diseased arteries (Saveljic et al.,
2020, Tomasevic et al., 2024). At its core, finite element modeling of atherosclerosis
involves discretizing the arterial wall into small geometric elements, each represented by
a set of mathematical equations that describe its mechanical behavior. These elements are
interconnected at nodes, allowing researchers to simulate the distribution of stresses and
strains throughout the arterial wall under various physiological conditions (Djorovic et
al, 2020). Key factors influencing the mechanical behavior of atherosclerotic plaques
include plaque composition (e.g., lipid core, fibrous cap), degree of calcification, and the
overall geometry of the vessel. By incorporating these factors into finite element models,
researchers can predict stress concentrations within the plaque, assess the risk of plaque
rupture, and evaluate the effectiveness of different therapeutic interventions (Filipovic et
al, 2011, Filipovic et al., 2014, Isailovic et al, 2017). Finite element models enable
researchers to explore how changes in blood flow patterns, such as those caused by
stenosis (narrowing of the artery), influence plaque development and progression. By
integrating fluid-structure interaction simulations, these models can provide insights into
the hemodynamic forces acting on the arterial wall and their role in plaque formation
(Filipovic et al.,, 2011, Filipovic et al., 2013). Recent advancements in computational
techniques, coupled with improvements in imaging modalities like MRI and CT
angiography, have enhanced the accuracy and predictive capabilities of finite element
models in studying atherosclerosis. These models not only contribute to our fundamental
understanding of disease mechanisms but also hold promise for personalized medicine
by guiding clinicians in making informed decisions regarding patient-specific treatment
strategies.

Biological systems exhibit behaviors that arise from the actions of individual cells and
their interactions. Cells possess the ability to move, interact, reproduce, and undergo
apoptosis. These cellular behaviors collectively influence the dynamics of multicellular
biological systems. Therefore, modeling such systems necessitates accounting for
intricate interactions among individual cells and environmental factors. Consequently,
there is a growing trend towards conducting research at the multicellular level, employing
various methodologies to model these complex biological systems. Behavior of complex
multicellular systems in models is defined by representation of discrete autonomous
entitites and examining their interactions on micro-level. This approach not only
enhances our understanding of complex biological processes but also facilitates efficient
and cost-effective virtual experiments (Johnson et al., 2018).

Two commonly utilized systems include cellular automata models (CA) and agent-based
models (ABM). Both approaches employ a bottom-up methodology where global system
behaviors emerge from local interactions among individual cells, each explicitly
represented with defined local behavioral rules (Hwang et al., 2009). Although CA and
ABM share similarities, their primary distinction lies in how they model the environment.
The opperation of these models is based on a lattice system with cells occupying specific
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network elements and transitioning between them (Hwang et al., 2009). Alternatively,
models can exist in a continuum (lattice-free) space, allowing cells to reside anywhere
within the computational domain. Here, the position of each cell is often determined by
solving kinematic or dynamic equations of motion, offering ABM a potential advantage in
realism over cellular automata, which impose stricter spatial constraints (Zahedmanesh
and Lally, 2012). In general, both CA and ABM strategies are suitable for modeling
complex behaviors such as those found in regulatory processes of the cardiovascular
system, where individual cell behaviors intricately influence macroscopic outcomes that
are challenging to predict straightforwardly.

3.2. ABM in cardiovascular medicine

When the behavior of complex biological systems relies heavily on interactions among
multiple cells, which are themselves influenced by changes in micro-environmental
factors, employing a multi-scale modeling approach becomes essential. Therefore,
methodologies like CA and ABM are used for investigating various aspects of
cardiovascular tissue and system regulation (Zahedmanesh & Lally, 2012).

ABM has emerged as a powerful computational tool in cardiovascular medicine, enabling
researchers and clinicians to simulate and analyze the complex interactions among
biological, environmental, and behavioral factors that influence cardiovascular health
(Bhui and Hayenga, 2017, Blagojevic et al., 2022, Corti et al., 2019, Corti et al., 2020b, Corti
etal, 2021, Cortietal., 2022, Corti etal,, 2023, Tomasevic et al., 2024, Filipovic etal., 2023,
Tsompou et al.,, 2022). By modeling individual entities, or "agents," and their interactions
within a defined system, ABM provides valuable insights into the dynamics of
cardiovascular diseases, particularly those related to atherosclerosis, hypertension, and
heart failure (Tsompou et al., 2022). This innovative approach facilitates the exploration
of scenarios that are often challenging to assess through traditional statistical methods or
experimental designs. At its core, ABM is a simulation technique that allows for the
representation of individual agents (e.g., cells, tissues, organs) and their behaviors in a
defined environment. Each agent operates based on a set of rules and interacts with other
agents and the environment according to specific protocols. This individual-based
perspective captures the heterogeneity within populations and enables the modeling of
complex systems where emergent behaviors arise from the interactions of simpler
entities (Bhui and Hayenga., 2017).

In cardiovascular medicine, ABM can simulate various processes, such as the progression
of atherosclerosis, the response of the cardiovascular system to interventions, and the
impact of lifestyle factors on heart health (Hayenga, 2011, Hayenga et al, 2011). By
representing individual patients or cells, ABM models can incorporate a wide range of
variables, including genetic predispositions, metabolic states, and lifestyle choices, to
better understand their contributions to cardiovascular disease risk and outcomes (Corti
etal., 2019; Corti et al., 2020; Corti et al., 2022).

Atherosclerosis is a prime candidate for ABM due to its multifactorial nature and the
interplay of various biological processes. ABM can simulate the progression of
atherosclerotic plaques by modeling the behavior of individual cells, such as endothelial
cells, smooth muscle cells, and macrophages, within the arterial wall (Corti et al,, 2019;
Tomasevic et al., 2024). Each cell type can have specific rules governing its behavior,
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including proliferation, migration, apoptosis, and response to inflammatory stimuli. For
instance, an ABM approach can capture how lipid accumulation, oxidative stress, and
inflammatory responses contribute to plaque formation and stability. By simulating the
interactions between lipid particles and arterial wall cells, researchers can observe how
different conditions, such as hyperlipidemia or hypertension, influence the development
of atherosclerosis over time. These models can also explore how therapeutic
interventions, such as statins or anti-inflammatory agents, affect plaque dynamics and
overall cardiovascular risk (Bhui et al., 2017; Blagojevic et al.,, 2022; Corti et al., 2019;
Corti et al,, 2020; Corti et al., 2022; Tomasevic et al., 2024; Filipovic et al.,, 2023; Tsompou
etal, 2022)..

ABM is also valuable for modeling cardiovascular responses to various stimuli, including
pharmacological interventions, exercise, or dietary changes. For instance, an ABM can
simulate the effects of a lifestyle intervention, such as increased physical activity, on the
cardiovascular system. By modeling individual agents that represent patients with
varying levels of baseline fitness and health status, researchers can assess how different
exercise regimens impact cardiovascular health, including changes in blood pressure,
heart rate, and overall fitness. ABM can also be used to evaluate the effects of medical
treatments on patient outcomes. By incorporating clinical data and treatment protocols,
ABM can simulate how different patients respond to specific therapies based on their
unique profiles. This personalized approach allows for the exploration of tailored
treatment strategies, identifying patients who more prone to benefiting from tailored
interventions and under what circumstances.

3.3. State-of-the art in ABM for atherosclerosis

For instance, (Pappalardo et al., 2008) introduced a 2D agent-based model aimed at
simulating early-stage atherosclerosis and the subsequent immune system response.
Their model comprehensively represented the critical entities and interactions involved
in immune processes that regulate atherogenesis. In a subsequent study (Pappalardo et
al, 2008), they explored the heightened risk of atherosclerosis due to short-term
elevations in LDL concentration, assessing whether reducing LDL levels could mitigate
this risk. Curtin and Zhou (2014) (Curtin and Zhou, 2014) developed a 2D ABM for
simulation of restenosis in blood vessels occuring after angioplasty and bare-metal stent
implantation. Their research highlighted how different vessel geometries and stent
placements influence restenosis development, using realistic pathologic geometries and
modeling atherosclerotic plaque as an inert entity. Olivares et al. (2017) (Olivares et al.,
2017) advanced this approach with a 3D ABM to simulate early foam cell formation in the
intima. They focused on dynamic interactions involving LDL oxidation, persistence of
oxidized LDL, and macrophage transformation into foam cells.

In addition to discrete methods like CA and ABM, robust numerical methods such as finite
element modeling (FEM) can be integrated into hybrid frameworks. FEM offers
advantages in quantification of arterial wall stress and wall shear stress (WSS) role
exploration in atherosclerosis pathogenesis, linking mechanotransduction at the cellular
level. Diseases associated with pathogenesis incorporate the release of specific chemicals
in the endothelium, permeability of low-density lipoprotein, cellular and extracellular
functions, proliferation of smooth muscle cell, and the dynamics of extracellular matrix
(ECM) (Chatzizisis et al., 2007).
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Zahedmanesh and colleagues developed an innovative hybrid biological modeling
framework that integrates a 2D agent-based model (ABM) in continuum space with a
finite element model (FEM) (Zahedmanesh & Lally, 2012). The FEM component was
employed to quantitatively assess von Mises stresses, crucial for evaluating arterial
damage following stent deployment. Meanwhile, the ABM in their work focused on
simulating the migration, proliferation, and degradation of ECM, as well as its synthesis
within the arterial wall due to restenosis as quantified by the FE analysis. Previously, this
modeling framework successfully elucidated vascularization patterns in tissue-
engineered blood vessels, revealing insights into how scaffold compliance and loading
regimes influence the growth of vascular smooth muscle cells and their role in intimal
hyperplasia development (Zahedmanesh & Lally, 2012).

Garbey and collaborators developed another hybrid computational framework that
integrates Partial Differential Equations (PDE) with ABM to study vascular adaptation
post-acute interventions (Garbey et al., 2015). PDEs accurately describe continuum
mechanics, calculating hemodynamic forces and stress-strain relationships defining the
vascular environment. In contrast, the fixed grid ABM comprehensively models discrete
cellular elements within the tissue, tracking cell dynamics including proliferation,
apoptosis, and ECM production or degradation. This computational approach was further
refined to relax assumptions, particularly regarding cellular motion which ideally should
be computed in a continuum space rather than on a discrete grid. This advancement
allows for a more realistic simulation of biological laws governing cellular behavior and
the active role of membrane interfaces between vascular layers (Garbey et al., 2019).

Current multiscale models of atherosclerosis capture the complex interplay between
hemodynamics and arterial wall remodeling during plaque development and
atherogenesis (Bhui & Hayenga, 2017; Corti et al., 2019; Corti et al., 2020). These
frameworks are based on coupled stochastic ABM for cellular dynamics and a
hemodynamics module for blood flow computation. Bhui and Hayenga (2017)
incorporated a molecular module to describe transport processes of inflammatory
cytokines and LDL within arterial walls, applied to a 3D idealized coronary artery model
to investigate the role of wall shear stress (WSS) in leukocyte trans-endothelial migration
(TEM) and plaque progression. Computational fluid dynamics (CFD) simulations
computed the WSS profile, used for initializing the ABM process. During plaque growth,
changes in luminal geometry simulated by ABM are coupled with CFD to calculate
hemodynamics in current vascular geometry and update WSS distribution.

In their implementation, a 3D ABM model featured a uniform arterial wall layer covered
by endothelial cells and leukocytes as active agents. Behavioral rules governed
endothelial adhesion, TEM, and other cellular processes, with leukocyte adhesion
probability influenced by WSS, circulating cytokines, and leukocyte concentration. TEM
was defined relative to arterial stiffness, while LDL transport and accumulation in the
arterial wall depended on WSS and systemic LDL concentration, modeled according to
Fick's law. Rules governing LDL oxidation and phagocytosis by monocyte-derived foam
cells were applied, incorporating Glagov's remodeling theory which preserves lumen area
during initial atherosclerosis phases through compensatory outward remodeling (Glagov
et al., 1987).
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3.4. Applications of Al in medicine

Al in healthcare is a rapidly evolving field, offering promising solutions to some of the
most pressing challenges in this sector. However, the integration of Al into healthcare also
raises various ethical, legal, and social issues. Consequently, there is a growing need for
comprehensive regulations to govern the use of Al in healthcare (Shearer et al,, 2021). In
the changing world of artificial intelligence, the European Union stands as a predecessor
of balance between innovation and the safeguarding of fundamental rights. The EU’s
regulatory framework for Al is carefully crafted, embodying a risk-based approach that
distinguishes between high-risk and low-risk Al applications. High-risk Al systems, given
their profound impact on safety and fundamental rights, have stringent requirements
imposed onto them. These encompass robust data governance to ensure data quality and
representativeness, comprehensive documentation for traceability, and explicit
transparency to inform users about the Al's capabilities and limitations. The essence of
human oversight is not lost, mechanisms are designed in a manner that allows human
intervention, ensuring that Al operates within the bounds of safety and ethics. On the
other hand, low-risk Al systems enjoy a breath of freedom, with regulations that are
designed to foster innovation and widespread adoption. Every high-risk Al system is
subjected to a rigorous conformity assessment, and those that are deemed approved are
marked with the CE marking - a certificate to their compliance with the standards of the
EU. Yet, in this world of artificial intelligence, there are practices that the EU holds in
prohibition, particularly those that violate fundamental rights. Social scoring and
manipulative practices are banished, and the use of Al for biometric identification is
stringently limited, especially in the sanctuaries of public spaces. The guardians of these
regulations are the national supervisory authorities, established in each EU member state,
overseen by the watchful eyes of the European Artificial Intelligence Board. This board, a
congregation of representatives from each member state and the Commission, ensures
the harmonious application of Al rules across the grandeur of the EU. In the pursuit of
innovation and excellence, the EU nurtures a dynamic Al ecosystem. Small and medium-
sized enterprises and startups, the leaders of innovation, are supported with special
provisions, ensuring that the blossoms of their creativity enriches the Al landscape. The
EU’s outlook is not limited to its borders, it extends globally, aiming to shape international
norms and standards for Al It is a dance of diplomacy and technology, facilitating
international data flows while upholding the sanctity of data protection. Public
engagement and ethical considerations are the soul of the EU’s Al regulation. Both public
and a variety of stakeholders, are involved in the process of Al development and
governance. In this narrative, the EU stands not as a solitary entity but as a collective,
where innovation, ethics, and public welfare are intertwined in the artificial intelligence
(Krishnan Ganapathy, 2021).

The European Union's Artificial Intelligence Act is a comprehensive document that
delineates the regulatory landscape for Al applications, with a particular focus on high-
risk systems. It carefully outlines the Parliament's position on various Al applications,
underscoring the imperative for stringent regulations to mitigate associated risks.
Biometric categorization systems and predictive policing emerge as focal points of
regulatory scrutiny. The Parliament advocates for a prohibition on biometric systems that
utilize sensitive characteristics, such as gender, race, and ethnicity. Similarly, predictive
policing systems, especially those rooted in profiling, location, or past criminal behavior,
are earmarked for stringent oversight. The document elaborates on the expanded
definition of high-risk Al systems, encapsulating those that pose a 'significant risk' to
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health, safety, fundamental rights, or the environment. Al applications deployed in
political campaigns and by very large online platforms, as defined under the Digital
Services Act, are categorised as high-risk, warranting enhanced regulatory oversight. The
Act also addresses general-purpose Al and foundation models, imposing obligations on
providers to safeguard fundamental rights and democracy. Generative Al models,
exemplified by systems like ChatGPT, are subjected to stringent transparency obligations,
ensuring accountability and ethical deployment. In the realm of governance and
enforcement, the Act empowers national authorities with unprecedented access to both
trained and training models of Al systems. It proposes the establishment of an Al Office to
facilitate the harmonised application of the Al Act across member states. The Act
underscores its commitment to fostering innovation and research, with a pronounced
emphasis on the development and deployment of free and open-source Al. High-risk Al
systems are subjected to a new regulatory regime, encompassing ex-ante conformity
assessment and mandatory registration in an EU-wide database. These systems must
adhere to stringent requirements spanning risk management, testing, technical
robustness, data training and governance, transparency, human oversight, and
cybersecurity (Novelli et al., 2023).

United Kingdom’s National Health Services, the NHS, which offers free health care, is at a
key point when it comes to regulations associated with Al. Recent advancements,
especially in machine learning and deep learning, have led to algorithms that can perform
tasks comparable to doctors, such as diagnostics and managing complex treatments. The
NHS's extensive data on citizens' health throughout their lives positions it to be a leader
in healthcare Al. The NHS collects a vast amount of patient data daily, which is invaluable
for training Al systems. However, this raises significant ethical and legal concerns,
particularly regarding potential misuse. Public trust in how the NHS handles patient data
is crucial, and incidents like the unauthorized use of data from 1.6 million patients by the
Royal Free NHS Trust for Al development have raised concerns. Ensuring explicit patient
consent for the use of their data in Al is essential. However, the actual use of Al in the NHS
is still limited, primarily due to the lack of comprehensive policy guidance (Hart, 2024).

In response to the growing importance of Al, the UK government published a code of
conduct in 2018. This code outlines expectations for Al development in the NHS, focusing
on proper data handling, algorithmic transparency, and accountability. [t aims to provide
a policy framework for creating safe and effective Al applications in healthcare. However,
this code is still in the initial consultation stage, indicating ongoing development. The need
for real-life data in machine learning presents ethical dilemmas, especially when patient
data are used beyond their original collection purpose. Public trust could be eroded if such
incidents recur, potentially leading patients to refuse to share their information. The
introduction of a national data opt-out program in 2018 has given patients more control
over their data, but maintaining trust and ethical standards remains a challenge (Piel et
al.,, 2018).

As seen in the example of NHS, Al is making significant inroads into the field of medicine,
promising enhancements in early detection, diagnosis, innovative therapies, personalised
medicine, and disease surveillance. The rapid development and widespread application
of Al present both opportunities and challenges, especially in domains previously
considered exclusive to human expertise. The swift evolution of Al technologies poses a
challenge for European legislators striving to keep legislation relevant and updated. Initial
attempts to impose legal standards and limitations on Al applications have primarily
involved soft law, including codes of conduct, recommendations, and declarations issued
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by EU institutions. A central concern for legislators and stakeholders is the
unintelligibility of Al systems. The explicability of Al, encompassing the traceability and
explainability of Al outputs, is crucial to safeguarding individual and collective rights. The
Al4People Scientific Committee established the explicability principle in 2018,
emphasizing the importance of intelligibility and accountability in Al systems (Prakash et
al., 2022).

Al systems used in healthcare would be categorized as High-risk Al systems in terms of
the EU Al Act. High-risk Al systems are those that could potentially impact people's safety
or their fundamental rights. In the context of healthcare, Al applications could potentially
fall under the category of high-risk Al systems, especially if they are used as a safety
component of a product or are governed by EU health and safety harmonisation
legislation. Such applications would be subject to stringent regulations to ensure safety
and compliance with ethical standards. The Al Act aims to mitigate the risks associated
with Al applications, ensuring that they are developed and used in ways that are safe,
ethical, and respect fundamental human rights (Prakash et al., 2022).

3.4.1. Decision Support Systems in Healthcare

Decision Support Systems (DSS) in healthcare are integral tools that assist clinicians and
healthcare professionals in making informed and accurate decisions. These systems
leverage a combination of technologies, data, and algorithms to provide insights and
recommendations, enhancing the quality and efficiency of healthcare delivery. Healthcare
DSS integrates a vast array of data sources, including Electronic Health Records (EHRs),
laboratory results, and medical imaging data. For instance, Kawamoto et al. (2005)
demonstrated that the integration of clinical data into DSS significantly improves clinical
practice and patient outcomes. These systems utilize advanced algorithms and artificial
intelligence to analyze complex datasets, offering personalized recommendations for
patient care. Clinical Decision Support (CDS) systems, a subset of DSS, are particularly
notable for their role in diagnosis and treatment. They analyze patient-specific data to
provide evidence-based recommendations. A study by Osheroff et al. (2012) highlighted
the role of CDS in reducing medical errors, improving healthcare quality, and reducing
costs. However, the implementation of DSS in healthcare is not without challenges.

Ethical and privacy concerns are paramount, underscoring the intricate balance between
technological advancement and ethical considerations. The ethical implications of using
DSS were analyzed by Ammenwerth et al (Ammenwerth and Rigby, 2016). shedding light
on a spectrum of concerns that are as diverse as they are complex. One of the primary
concerns, as mentioned by both the EU Al act and the UK regulation is data privacy. With
DSS integrating vast amounts of sensitive patient data, the risk of unauthorized access and
data breaches is a significant concern. Patients' confidential information, including
medical histories, diagnoses, and treatment plans, must be safeguarded with the utmost
integrity. The systems must comply with legal frameworks like the Health Insurance
Portability and Accountability Act (HIPAA) in the U.S. or the General Data Protection
Regulation (GDPR) in Europe, which impose stringent measures to protect patient data.
In addition to privacy, security is another important aspect. The infrastructure supporting
DSS must be fortified against potential cyber-attacks and unauthorized access. The
integrity of the data and the systems is crucial not just for the privacy of the individuals
but also for the accuracy and reliability of the decision support provided. A breach could
not only compromise privacy but also the quality of healthcare delivery. The potential for
bias in algorithmic recommendations is also a pressing ethical issue. Algorithms are

30



designed and trained by humans, and can inadvertently inherit biases present in the
training data or the designers. This can lead to skewed or unfair recommendations,
impacting certain patient groups disproportionately. It underscores the need for
transparency, fairness, and accountability in the design and implementation of algorithms
in DSS. The issue of informed consent also looms large. Patients must be adequately
informed about how their data will be used and must have the autonomy to consent or
decline. The transparency in the usage of data and the decisions made by DSS is integral
to building trust and ensuring ethical standards (Ammenwerth et al., 2018).

3.4.2. Al in Diagnosis and Treatment

Artificial intelligence continues to revolutionize the field of medical diagnosis, with
advancements in machine learning, particularly deep learning, leading the charge. These
technologies have proven instrumental in enhancing the accuracy, speed, and efficiency
of diagnosing a variety of medical conditions. The integration of Al in healthcare has been
a subject of ongoing research and development over the past few years (Jiang etal., 2017).
Al systems, particularly machine learning (ML) and deep learning (DL) algorithms, have
demonstrated unprecedented capabilities in diagnosing diseases, sometimes
outperforming human clinicians (Esteva et al., 2019).

In addition to clinical DSS, application of Al and DSS extends towards management and
maintenance of medical equipment. As medical equipment stands at the forefront of
medical decision making it is of utmost importance to ensure its performance and
accuracy. The European Commission has stipulated the importance of this by introduction
of post-market surveillance as mandatory in the new medical device regulation (MDR)
introduced in 2017 and put in force in 2022 (Badnjevi¢ and Vukovi¢, 2020, Badnjevi¢ and
Pokvi¢, 2020, Badnjevic et al,, 2022, Badnjevic et al., 2023).

Post-market surveillance of medical devices (Badnjevi¢ et al,, 2015) has been proven
useful in case studies conducted in Bosnia and Herzegovina where a large number of
medical devices has been deemed inaccurate on the basis of performance inspection
(Gurbeta et al., 2018a, Gurbeta and Badnjevi¢, 2017, Gurbeta et al., 2016a, Gurbeta et al,,
2015, Gurbeta et al., 2017, Gurbeta et al., 2018b, Gurbeta et al., 2016b). As a result of
performing post-market surveillance, a vast amount of data was collected and the team
from Verlab has decided to utilize it and design algorithms capable of predicting medical
device failure on the basis of their performance throughout the years (Hadzi¢ et al., 2020,
Hrvat et al, 2020, Spahi¢ et al, 2020). Transcending the diagnostic challenges and
ensuring safe and reliable measurements made by medical devices, the following
paragraphs will briefly describe the applications of Al as DSS for aiding in diagnosis,
treatment and prognosis of the leading causes of mortality and co-morbidity worldwide.

In oncology, Al models have been developed to predict cancer development, progression
and treatment planning (Nuhi¢ et al., 2020, Spahi¢ and Cordié, 2020). Al algorithms
analyze complex data sets, including genomic, proteomic, and imaging data, to identify the
most effective treatment strategies (Hafizovi¢ et al., 2021, Mujki¢ et al, 2022). By
integrating and analyzing vast and complex genomic data, Al identifies specific gene
mutations and pathways associated with individual cancers. This genomic insight
facilitates the development and administration of targeted therapies, enhancing
treatment efficacy while minimizing adverse effects. Zhang et al. (2019) (Zhang et al,,
2019) illustrated how Al could predict gene mutations from imaging data, leading to
personalized treatment strategies for lung cancer patients. Al also empowers clinicians to
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personalize chemotherapy regimens by predicting individual patient responses to
various drugs. Algorithms analyze clinical, genomic, and proteomic data to identify
optimal drug combinations and dosages, minimizing toxicity and enhancing treatment
outcomes.

Al has been instrumental in diagnosing respiratory diseases like asthma (Stokes et al,,
2021), chronic obstructive pulmonary disease (COPD) (Badnjevic et al., 2014, Becirovi¢
et al, 2021), and lung cancer. Al algorithms have demonstrated accuracy in identifying
malignant nodules in CT scans (Ardila et al., 2019). Moreover, Al-based systems are being
employed to analyze pulmonary function tests and predict COPD exacerbations, offering
valuable insights for treatment planning (Golpe et al., 2022). Machine learning models are
instrumental in predicting COPD exacerbations, enhancing preventive measures and
treatment planning (Becirovi¢ et al., 2021). Deep learning algorithms analyze sputum
smear microscopy images to detect Mycobacterium tuberculosis with high accuracy
(Lopes and Valiati, 2017). In addition to medical imaging data, clinical data was used to
predict the severity of COVID-19 clinical presentation (Badnjevi¢ et al., 2024).

Al has been prominently used for the early prediction of metabolic disorders such as
lactose intolerance (Spahic etal., 2020), Addison disease (DzZaferovi¢ etal., 2022) and type
2 diabetes (Ali¢ et al., 2017). Machine learning models leverage data such as patient
demographics, clinical parameters, and lifestyle factors to predict the onset of diabetes
(Alic et al.,, 2017). Al can also be used for prediction and management of gestational
diabetes, a type of diabetes that affects pregnant women. Machine learning models
analyze prenatal data, including maternal age, body mass index (BMI), family history, and
blood glucose levels to predict the risk of developing gestational diabetes, enabling
preventive measures (Desai et al., 2024).

Al also plays a critical role in drug discovery, significantly reducing the time and resources
traditionally required. Machine learning algorithms predict the pharmacological
properties of various compounds, identifying potential new drugs. Machine learning
models predict the biological activity of numerous compounds, facilitating the selection
of promising candidates for further development. Chen et al. (2018) (Chen et al., 2018)
discussed the role of Al in analyzing biological networks to identify potential drug targets
and pathways, accelerating preclinical drug development. Al models can also predict
potential drug targets and analyze complex biological data to develop new therapeutic
agents, as evidenced in the rapid development of treatments and vaccines for diseases like
COVID-19. Al is also enhancing clinical trial design, recruitment, and execution, ensuring
the expedited development and approval of new drugs. Machine learning models analyze
vast datasets, including electronic health records and real-world data, to identify optimal
trial designs, predict patient responses, and monitor adverse effects in real-time.

Al enhances mental health treatment by providing personalized interventions and real-
time monitoring. Machine learning models analyze patient data, including speech, text,
and behavioral patterns, to identify mental health conditions and monitor treatment
progress. Al-powered applications and chatbots provide instant, personalized
therapeutic interventions, improving accessibility and effectiveness of mental health care
(Iniesta et al.,, 2016). Al is instrumental in physical rehabilitation, offering personalized
treatment plans and real-time monitoring of patient progress. Al algorithms analyze data
from sensors and wearable devices to tailor rehabilitation exercises to individual patients’
needs, optimizing recovery outcomes. Machine learning models also predict patient
progress and adapt treatment plans accordingly, ensuring optimal rehabilitation
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efficiency and effectiveness (Pobiruchin et al., 2017). Al aids in personalizing pain
management strategies, ensuring patients receive effective relief tailored to their specific
needs. Machine learning algorithms analyze clinical, genomic, and real-time data to
predict individual responses to various pain management interventions. Al applications
in mobile health technologies enable real-time monitoring and management of pain,
improving patient outcomes and quality of life (Campion et al,, 2016).

Integration of Al into everyday healthcare practice is a part of the fourth industrial
revolution, commonly termed as Industry 4.0 (Pokvic et al., 2020). Developing computing
capabilities and big data processing are effectively used to automate and expedite hospital
and clinical processes thus ensuring state of the art healthcare for every patient at any
time (Becirovic et al.).
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3.5. State of the art in Al in cardiovascular field

Figure 8 shows the diverse aplications of artificial intelligence in the field of
cardiovascular medicine.

Atherosclerotic cardiovascular disease
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Intelligent analytics

Clinical outputs

Figure 8. Fields of application of Al in cardiovascular medicine

Al has revolutionized the perception of early detection of atherosclerosis by automating
image analysis and predicting plaque progression through clinical data integration
(Follmer et al., 2024, Rogers and Aikawa, 2019, Wang and Zhu, 2024). Traditional
diagnostic methods often rely on manual interpretation of medical images, which can be
time-consuming and prone to subjective error. In contrast, Al enables the rapid and
accurate analysis of large volumes of patient data, allowing for more precise identification
of atherosclerotic changes at earlier stages, when interventions can be most effective.
Machine learning (ML) and deep learning (DL) algorithms have demonstrated remarkable
capabilities in processing diverse and complex datasets, including electronic health
records (EHRs), medical imaging, and genetic profiles (Maragna et al.,, 2021). These data
sources collectively provide a multidimensional view of patient health, offering insights
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that span both clinical parameters and detailed anatomical features. The integration of
these diverse datasets through Al techniques enables a more holistic approach to
diagnosing and predicting diseases such as atherosclerosis, where multiple factors
converge to influence disease onset and progression (Spahic et al., 2023).

Medical Imaging plays a pivotal role in the assessment and diagnosis of atherosclerosis,
particularly in visualizing plaques within the arteries (Mushenkova et al., 2020). ML and
DL models, especially convolutional neural networks (CNNs), are increasingly applied to
process large volumes of medical images such as coronary computed tomography
angiography (CCTA), magnetic resonance imaging (MRI), and intravascular ultrasound
(IVUS) (Kolossvary et al,, 2017, Lee et al.,, 2016). These imaging modalities provide high-
resolution images of the arterial walls, enabling the detection of plaques, calcifications,
and vessel stenosis. CNNs can be trained to identify and classify different types of
atherosclerotic plaques—such as lipid-rich, fibrous, or calcified—based on their
appearance in these images (Athanasiou et al, 2014, Kunchur and Mostago-Guidolin,
2022, Kolluru, 2018, Shibutani et al., 2021). The ability of CNNs to detect subtle features
that may be missed by human observers, such as micro-calcifications or minute changes
in plaque composition, allows for earlier and more accurate diagnosis of high-risk
atherosclerotic lesions .

In addition to detecting plaques, Al-driven models can quantify the extent of arterial
narrowing, assess the stability of plaques (distinguishing between stable and unstable
plaques that are prone to rupture), and track changes in the size or composition of plaques
over time (Follmer et al., 2024). By automating the process of image analysis, Al reduces
the variability that arises from manual interpretation by clinicians, ensuring more
consistent and reliable diagnoses. Moreover, integrating imaging data with clinical risk
factors from EHRs allows ML models to develop more robust predictions of disease
progression, offering a comprehensive view of the patient’s cardiovascular health(Amal
et al.,, 2022, Sanchez-Martinez et al.,, 2022).

Genetic profiles add yet another layer of complexity and richness to the data that Al
models can process. Genetic factors play a significant role in determining an individual’s
predisposition to atherosclerosis. Genome-wide association studies (GWAS) have
identified numerous genetic variants associated with an increased risk of atherosclerotic
cardiovascular disease (Holdt et al., 2013). These include variants in genes related to lipid
metabolism (such as LDLR or APOB), inflammation (e.g., [L6), and vascular homeostasis
(e.g., NOS3) (Butnariu et al,, 2022). By integrating genetic data with clinical and imaging
information, Al models can identify genetic predispositions that, in combination with
lifestyle factors, contribute to an individual's overall risk of developing atherosclerosis
(Krittanawong et al., 2022, Usova et al., 2021). One of the strengths of Al in this domain is
its ability to handle high-dimensional data, where the number of variables (such as
genetic markers) far exceeds the number of patients. Traditional statistical methods may
struggle with this type of data, particularly when interactions between genetic and
environmental factors are complex. However, ML algorithms, especially those using
regularization techniques, can identify subtle associations between genetic variants and
disease outcomes, offering insights into how specific genetic profiles influence the
development and progression of atherosclerosis (Okser et al., 2014).
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EHRs represent a critical source of clinical data for Al-based models, encompassing
detailed patient information such as medical history, laboratory results, medications, and
physician notes. Within the context of atherosclerosis, EHRs hold valuable insights on
traditional cardiovascular risk factors, including cholesterol levels, blood pressure, the
presence of hypertension, diabetes, smoking status, body mass index (BMI), and family
history of cardiovascular disease (Carrasco-Ribelles et al., 2023). These variables are
essential for assessing an individual’s risk for developing atherosclerosis and its related
complications, such as coronary artery disease or stroke. ML algorithms can efficiently sift
through these massive datasets, uncovering correlations between patient risk factors and
atherosclerosis development that might not be immediately apparent through traditional
statistical methods. For instance, algorithms can detect non-linear relationships between
risk factors or interactions that contribute to a heightened risk for plaque formation.
Moreover, beyond risk factor stratification, EHRs also provide longitudinal data, allowing
for tracking patient health over time. By analyzing trends in laboratory results or changes
in medication regimens, ML models can predict future cardiovascular events or plaque
progression with a high degree of accuracy. This longitudinal aspect of EHRs is
particularly useful for developing personalized treatment plans, as the Al models can
adjust risk estimates based on new clinical data, leading to more dynamic and
individualized patient care (Carrasco-Ribelles et al., 2023). When these data sources—
EHRs, imaging, and genetics—are combined, ML and DL algorithms can offer
unprecedented insights into atherosclerosis risk stratification. These models can not only
predict the likelihood of plaque formation but also forecast its progression and potential
complications, helping clinicians tailor preventative and therapeutic strategies to the
needs of each patient (Seckanovic et al.,, 2020). Moreover, these Al systems can adapt as
more data is collected, continuously refining predictions and treatment recommendations
in real-time, thus leading to more dynamic and personalized care.

Al is very useful in predicting heart failure using electronic health records and real-time
cardiac monitoring data. Machine learning algorithms can analyze vast datasets, including
clinical, laboratory, and imaging data, to identify early signs of heart failure, enabling
proactive management (Futoma et al., 2017; Spahic et al., 2023; Seckanovic et al., 2020).
A study by Weng et al. (2017) employed machine learning algorithms to predict the risk
of cardiovascular disease. The study utilized electronic health data, including age, sex,
ethnicity, and medication, and found that machine learning models were more accurate
in predicting cardiovascular events compared to traditional statistical models. Al models,
especially deep learning, are employed in the real-time detection of atrial fibrillation, a
common cardiac arrhythmia. By analyzing electrocardiogram (ECG) data, Al was proven
to be effective in identification of patterns indicative of atrial fibrillation with high
accuracy, aiding in timely diagnosis and treatment (Hannun et al., 2019). Machine
learning models can also effectively analyze coronary computed tomography angiography
(CCTA) images to detect and quantify coronary plaque, thus aiding in risk stratification
and treatment planning in the realm of coronary artery diseases (Spahic et al., 2023; Zreik
et al., 2018). Another application of Al in the field of cardiology are ML technologies are
employed for the prediction, classification, and outcome prediction of stroke. They
analyze clinical data, imaging, and genetic information to classify stroke types, predict
occurrences, and project recovery outcomes, significantly enhancing patient care (Hrvat
et al.,, 2023; Monteiro et al., 2020).
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4.Experimental research of atherosclerotic plaque
progression

4.1. Agent Based Modeling

The dataset used for development of agent based models in this PhD thesis originates
from imaging of carotid arteries with bifurcation. The initially idealized peripheral artery
geometry dataset was unavailable due to experimental drawbacks. In order to ensure the
reliability of the results, a more complex geometry of an artery with bifurcation was used
to conduct the in silico experiments. The dataset consisted of 15 patient-specific
geometries obtained by means of reconstruction from MRI. The initial geometries were
incorporated into input files suitable for finite element analysis using PAK software via a
data converter designed specifically for this purpose. The initial .dat files contained
default set parameters for simulation.

The methodology for the agent based model adopted in this work, based on Corti et al.
(2020), involves four iterative steps: 1) geometry preparation, 2) CFD simulation, 3) ABM
simulation, and 4) new 3D geometry generation. Firstly, a 3D model of a healthy artery is
built, followed by generation of a fluid domain mesh using PAK software. A CFD simulation
is then performed in PAK to compute hemodynamics and extract Wall Shear Stress (WSS)
values at the lumen interface across 2D vessel cross-sections. For each cross-section,
hemodynamic-driven remodeling is simulated using an ABM that models cellular,
extracellular, and lipid dynamics. The CFD simulation is responsible for calculating WSS
values, while the ABM handles the remodeling of the arterial wall.

CFD simulation

Wall Shear Stress (WSS) ’

Figure 9. ABM methodology
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Figure 9 outlines the workflow of the proposed framework. For each 2D cross-section,
geometry changes resulting from the ABM are transferred to the fluid domain, causing a
recalculation of blood flow and WSS values, which are then used to update the ABM in the
next step. This coupling ensures that the WSS distribution is continuously updated as the
geometry of the artery evolves. By simulating cell mitosis, ECM degradation and productin
and lipid infiltration in the intima, the ABM replicats arterial wall remodeling. Various
vessel structures and compositions, along with new cellular events, were incorporated
into the model. The ABM used in this study was methodologically developed by Corti et
al. (2020) and validated under atherogenic conditions. The coupling between the CFD and
ABM modules begins by initializing the ABM with hemodynamic input.

WSS values were derived from 3D CFD simulation and eq.4 represents the calculation of
endothelial dysfunction level D! while WSS® represents WSS at site i and WSS,= 1Pa the
WSS threshold.
o _wsst i
D(WSS)! = Di = 1 Wssy” if WSS < WSSO.
0, otherwise

Eq. 4

WSS, was determined based on the work of Samady et al,,(Samady et al.,, 2011). Each
dysfunctional endothelial site i, with Dt #0, starting a state of alteration that diffuses
within the intima through isotropic diffusion, from a peak of intensity D’ with a diffusion
constant ¢. A”‘(Di,d) represents the alteration level recorded at the k-th site and
produced by the i-th endothelial site within intima, at a distance d from i (eq.5).

2

1/ d
Ai,k(Di’d) — Abk = Di & e_5(4_‘l’f) _ Eq.5

The global inflammation level of the k-th site I¥ is calculated as a sum of individual
alteration states for each site k as shown in eq.6.

NpL
poy a Eq. 6
i=1

Where:
-N; is the initial number of sites of the lumen wall
- resulting I* that affects the agent dynamics

WSS profile was defined as atherogenic when all the WSS values at the i-th sites are larger
than the designated threshold, D! = 0Viand I¥ =0 everywhere or if a state of
inflammation I develops and the mechanisms of plaque formation are activated ( WSS* <
WSS,)

The physiological conditions were replicated by setting baseline probability densities for
cell mitosis/apoptosis and ECM deposition/degradation rates as defined with Eq.7 and
Eq.8, respectively:

Pmit = Papop = %1, Eq.7
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pprod = ﬁ * pdeg =0y, Eq'8

where a4, a4 and f are involved in maintaining the physiological cell/ECM ratio defined
for each tissue layer during initialization. (Garbey et al., 2017).

Coefficient 8 for the intima, media and adventitia layers were set in accordance to Garbey
et al. (Garbey et al., 2017 ) to guarantee stable trends of ECM in each layer under baseline
conditions. Eq.7 and Eq. 8 thereby trigger arterial wall remodelling, leading to the
replication of healthy artery homeostasis. Inflammation level consequently increases the
probability of cell mitosis and ECM production in the intima causing an increase in the
number of neighboring lipids and the closeness to the lumen (Doran et al,, 2008), leading
to the following:

{ a; - (14 aI®) if ny, =0 Eq.9
Pmit = . )
mit a, - (1+ azl")(l + a3nlip){1 + exp(—d{‘umen)} if i #0

{ ay(L+a®)if ny, =0 Eq.10
p = . )
prod a,-(1+ azl")(l + a3nlip){1 + exp(—d{‘umen)} if np #0

where a, and a; weight the effect of the inflammation state I* and the influence of the
neighboring lipids n;;;,, while d¥,... is the distance between the site k and the lumen wall.

The coefficients were set following the framework proposed by Corti et al.(Corti et al,
2020a).

Once the intima thickens over a given threshold (Bentzon et al., 2014), lipid dynamics is
activated and lipid infiltration is calculated as the probability of a site k expressed by:
i Eq.11
Pripia = a5 (1 + I"){1 + ag - exp(—d{‘ip)} (1 + a—lp), q
7
where a; sets the event probability in the interval (0, 1). Lipid clustering is promoted by
increasing the probability of a lipid to occupy a site k close to another lipid, whose

lip as defined in terms a, - exp (—d;,) and (1 + n;—;p) Only a single lipid can
enter the intima at an individual time step. The terms and coefficients of Eq. 11 are set so
to mimic a lipid nucleus (Otsuka et al., 2013). Once the lipids enter the intima layer, the
lipid agents have to maintain their position throughout the entire simulation.
Maintenance of the lipid core is ensured by defining that the agent movement is
performed along the shortest path that does not include the lipid agents. In order to
provide structural integrity and fidelity of the simulation the agent movement complies
with the minimum energy principle at all times except in the case when the lipid agents
are positioned along the shortest path. Figure 10. Tissue reorganization when K produces
an element or is removed in b) the intima, c) media and d) adventitia.Figure 10 provides
a schematic representation of the arterial wall (Fig. 10a), an example of generation or
disposal of an agent in the intima layer (Fig. 10b), the media layer (Fig. 10c) and the
adventitia layer (Fig. 10d).

distance is d
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a)

b) a Kis removed

c) Active site K in Media K generates an element

d) Active site K in Adventitia K generates an element

N @&

Figure 10. Tissue reorganization when K produces an element or is removed in b) the
intima, c) media and d) adventitia.

A distinct 3D geometry of the vessel lumen is constructed, and the initial ABM
configuration for each plane in the subsequent cycle is determined. For each ABM solution
at a specific cross-section (M), the lumen and external radii, along with plaque thickness,
are calculated and represented as: R} (), withj = 1,2,3, respectively. The corresponding
deviation, A’, from the average configuration, mwas computed as defined in Eq. 12,
and the ABM i-th output minimizing A was selected:

Aizifznwj\/(R}(ﬁ) ~R(®)"dd Eq.12
j=1"°

where each j-th quantity is weighed by w;. The same criterion was applied for all cross-
sections and the 3D geometry was finally reconstructed.

Coupling FE computational fluid dynamics with ABM

Blood flow dynamics can be effectively modelled using continuum methods like the Finite
Element Method (FEM). By numerically solving the Navier-Stokes equations, it is possible
to obtain velocity and pressure fields, as well as the distribution of shear stresses along
the vessel wall. Recent studies have demonstrated that hemodynamic parameters play a
crucial role in the development of atherosclerosis, with Wall Shear Stress being one of the
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key factors. WSS influences the transport of LDL from the bloodstream into the vessel
wall, thereby impacting the progression of atherosclerosis.

Atherosclerosis progresses through intricate molecular interactions within the vessel
wall, governed by distinct rules and involving various cellular and molecular components.
The process initiates when LDL particles penetrate the vessel wall, linking the molecular
dynamics of atherosclerosis to the hemodynamic characteristics of blood flow. To address
the interplay between macroscopic blood flow and microscopic disease mechanisms, a
hybrid model integrating FEM and an ABM was established. The ABM parameters are
drawn from references outlined in the theoretical background section, while the LDL
entry rate into the domain varies and is derived from FEM outputs. The distribution of
axial LDL flux along the vessel is projected onto the ABM’s horizontal axis, with LDL
source locations evenly spaced along this axis. The entry rate at each source is scaled to
the LDL flux at the corresponding FEM coordinate, while the vertical positioning of these
sources is randomized. This setup provides the boundary conditions for simulating
atherosclerosis progression using the ABM. Figures presented in a comparative manner
in Tables 1-13 show the changes in the geometry of the artery due to remodelling driven
by agent-based modelling coupled with blood flow. The results are presented for the
variables wall shear stress, velocities and the ABM modulus.
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Table 1. ABM results for patient specific geometry 1
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Table 2. ABM results for patient specific geometry 2
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Table 3. ABM results for patient specific geometry 2
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Table 4. ABM results for patient specific geometry 4
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Table 5. ABM results for patient specific geometry 2
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Table 6. ABM results for patient specific geometry 6
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Table 7. ABM results for patient specific geometry 7
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Table 8. ABM results for patient specific geometry 8
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Table 9. ABM results for patient specific geometry 9
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Table 10. ABM results for patient specific geometry 10
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Table 11. ABM results for patient specific geometry 11
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Table 12. ABM results for patient specific geometry 12
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Table 13. ABM results for patient specific geometry 13
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As the initial parameters were homogenous accross all simulations, the changes in plaque
progression are only due to initial differences in plaque content and structure
accompaniead by vessel geometry. The model was validated with patient follow-up
results and indicated fidelity.

4.2. ABM Parameter Sensitivity Analysis

Parameter sensitivity analysis (PSA) is a quantitative method used to determine how the
variation in input parameters of a model affects its output. It helps identify which
parameters have the most significant impact on the model’s predictions, thus providing
insights into the model’s robustness and reliability. This analysis is crucial in various
fields, including engineering, economics, environmental science, and healthcare, where
models are used to simulate complex systems and make predictions.
The importance of PSA lies in:
e Model validation: By understanding which parameters significantly influence
model outputs, researchers can validate their models more effectively, ensuring
that they are accurately representing the underlying processes.
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e Uncertainty quantification: PSA helps quantify uncertainties in model predictions
resulting from uncertainties in input parameters. This understanding is vital for
making informed decisions based on model outputs.

e Optimization: Identifying critical parameters allows for targeted optimization
efforts, which can enhance the model’s performance while reducing computational
costs.

e Decision-making support: In fields like healthcare and environmental
management, understanding parameter sensitivities can inform better decision-
making by highlighting key factors that influence outcomes.

e Guiding experimental design: Insights gained from sensitivity analysis can help
guide experimental design, focusing resources on the most influential parameters.

There are various methods for performing parameter sensitivity analysis, each suited for
different types of models and applications. Different types of sensitivity analysis are:

e Local sensitivity analysis

¢ Global sensitivity analysis

e Screening methods

e Regression-based sensitivity analysis

Local sensitivity analysis which examines how small changes in input parameters affect
the output around a nominal point (usually the mean or expected value). It uses the first
derivative (gradient) of the output with respect to the input parameters. It typically
involves perturbing each parameter slightly while keeping others constant and observing
the change in output.

Global sensitivity analysis assesses the influence of input parameters over their entire
range of possible values. It considers the joint variability of all parameters and their
interactions. Methods of global sensitivity analysis include:

e Variance-based methods, such as Sobol’ indices, which decompose the variance of
the output into contributions from individual parameters and their interactions.

e Fourier Amplitude Sensitivity Test (FAST) that transforms the parameter space
into a Fourier series to quantify sensitivities.

e Monte Carlo Simulations randomly sample input parameters from their
probability distributions to observe the resulting output variability.

Screening methods are used as PSA when the number of parameters is large, and the goal
is to identify the most influential parameters quickly. These methods can filter out
insignificant parameters before conducting a more detailed analysis. Methods of
screening can be:

¢ One-at-a-Time (OAT) Testing that systematically varies one parameter at a time
while holding others constant.

e FAST and Morris methods that efficient techniques to identify sensitive
parameters in a reduced number of model runs.

Regression-based sensitivity analysis involves fitting a regression model to the output
data, with input parameters as predictors. The coefficients of the regression model
indicate the sensitivity of the output to changes in each parameter.

A comparison of advantages and limitations of different sensitivity analysis methods is
given in Table 14.
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Table 14. Comparison of different sensitivity analysis methods

for linear models

Advantage Limitation
Local sensitivity analysis Simple and | It assumes linearity and
computationally efficient | may not capture nonlinear

effects or interactions
between parameters.

Global sensitivity analysis

Provides a comprehensive
view of parameter effects
and captures nonlinearities
and interactions.

More computationally
intensive and requires a
larger number of model
evaluations.

Screening methods

Efficient and can
significantly reduce

May miss interactions
between parameters.

computational effort.
Useful for linear models

Regression-based Limited to linear

sensitivity analysis and provides a | relationships and may not
straightforward capture complexities in
interpretation of | more intricate models.
sensitivities.

Latin Hypercube Sampling (LHS) is a powerful statistical technique widely used in PSA
and Monte Carlo simulations. It serves as a robust method for efficiently exploring the
input parameter space of a model, generating a set of samples that accurately represent
potential outcomes. Understanding LHS involves diving into its unique approach,
advantages, and applications in sensitivity analysis. At its core, LHS is a stratified sampling
method that ensures each parameter is uniformly sampled across its entire range. Unlike
traditional random sampling, where each parameter is treated independently, LHS
divides the range of each parameter into equally probable intervals, also known as strata.
The design of LHS is systematic and intuitive. To start, each input parameter is broken
down into N equal intervals, with N representing the total number of desired samples. For
every parameter, one value is randomly selected from each of these intervals, and these
selected values are then combined to create a complete set of input parameters for the
model. This approach guarantees that all combinations of parameter values are covered,
resulting in a more efficient exploration of the parameter space.

The advantages of using LHS in PSA are firstly that it enhances efficiency by providing a
more accurate representation of the input space with fewer samples compared to simple
random sampling. This characteristic is particularly valuable when working with complex
models that demand significant computational resources for evaluation. By ensuring that
each parameter’s range is uniformly sampled, LHS avoids clustering in specific regions,
allowing for better coverage of the overall parameter space. Moreover, LHS contributes
to reducing the variance of output estimates, as it effectively captures the entire range of
each parameter. Implementing LHS is also straightforward, making it accessible for
researchers across various fields.

LHS finds its applications in numerous areas of sensitivity analysis. In exploratory studies,
for example, it plays a crucial role in identifying which parameters exert the most
significant influence on model outputs. In fields such as environmental modeling, finance,
and engineering, LHS helps quantify uncertainties by sampling input parameters and
assessing their impact on variability in the results. It also supports model calibration and
validation by efficiently exploring the parameter space to identify optimal values and
validate predictions.
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Implementing LHS in parameter sensitivity analysis follows a clear sequence of steps.
Initially, the parameters to be analyzed are determined and their corresponding ranges
or probability distributions determined. Next, the number of samples to be generated for
the analysis is determined. Each parameter’s range is then stratified into equal intervals
based on the sample size. Once this is done, one value is randomly selected from each
interval for each parameter, ensuring all intervals are represented. The samples are
combined to create a comprehensive set of input parameter combinations, which are
subsequently used to run the model. Finally, the output data is analyzed to identify
influential parameters and their effects. The methodology of LHS-based sensitivity
analysis conducted in this research is show in Figure 11.
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Figure 11. Workflow of LHS PSA

The intrinsic ABM parameters driving the simulation were initially defined by Garbey et
al,(Garbey et al,, 2017) and the constant parameters that drive cellular events are:

- Probability of mitosis and apoptosis
- Smooth muscle cell (SMC) division in the intimal layer
- Extracellular matrix (ECM) deposition in intimal layer
- ECM deposition in medial layer
- SMC division in medial layer
- Outward remodeling driven by shear forces
- Outward remodeling driven by tensile forces
All of the aforementioned parameters have been defined in literature and their respective

physiological ranges determined (Table 15).
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Table 15. ABM parameters and ranges

Parameter | Parameter description Parameter Range Default

name type value

a1 Probability of mitosis and | constant 0.05 0.05
apoptosis

az Probability of SMC | variable 2-17 1.5
proliferation in tunica
media

a3 Probability of SMC | variable 0-0.5 0.1
proliferation in intima

o4 Probability of ECM | constant 0.008 0.008
degradation

s Probability of lipid | variable 0-0.106 0.005
infiltration

Qs Outward remodeling | Variable 0-24.46 10.0
driven by shear forces

o Outward remodeling | Variable 1.84-100 6.0
driven by tensile forces

Parameter sensitivity analysis results

Multi-parametric sensitivity analysis was conducted using LHS to randomly sample the
triangular probability density function of each parameter and define the parameter set
for the ABM simulations. This method allowed for the exploratory testing of the entire
range of each parameter and is proven to achieve good accuracy with a limited number of
simulations. The probability density functions of all parameters were divided into 100
equal probability intervals and an LHS matrix was generated identifying 100 ABM
parameter combinations. To account for the influence of these parameters on different
initial patient-specific geometries, 100 simulations with different patient-specific
geometries were conducted for 13 distinct cases.

The results of PSA were first analyzed graphically in the domain of ABM simulation
results. Results of example simulations are presented in Figures 12-18 and parameter
comparisons are given in tables 16-22.
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Figure 12.a ABM results with default parameters
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Figure 12.b ABM results with LHS generated parameters (Table 16.)

Figure 12. Graphical result difference for LHS on sample geometry 3

Asitcanbe seen from Figure 12, even a slight increase in a5 causes significant progression
of atherosclerosis. The progression of atherosclerosis in this case seems irregular as the
process is directed towards the arterial lumen, indicating that the ABM could be
oversensitive to changes made to as.
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Table 16. Parameter comparison LHS (geometry 2)

Parameter | Default simulation parameters | LHS generated | Parameter status
simulation
parameters

a1 0.05 0.05 Const

a2 1.5 1.5 Const

a3 0.1 0.1 Const

04 0.008 0.008 Const.

as 0.005 0.009 >

O 10.0 10.0 Const

oz 6.0 6.0 Const
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Instance 2

Figure 13.a ABM results with default parameters

Figure 13.b ABM results with LHS generated parameters (Table 17)

Figure 13. Graphical result difference for LHS on sample geometry 3

In this instance, the LHS parameters intorduced an increase in a2, a3, o5 and a7 along with
a decrease in as. Even though the parameter driving the arterial wall remodelling was
decreased the contribution of the increase in other parameters resulted in a significantly
increased plaque progression. Additionally, the plaque progression in this case is
irregular as it is modeled as a migration of the atherosclerotic plaque towards the arterial
lumen. Even though this can be interpreted as the breakage of the plaque and thrombus
formation, a significant increase in the parameter driving outward remodelling by tensile
forces could be a potential disruptor of the simulation.
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Table 17. Parameter comparison LHS (geometry 3)

Parameter | Default simulation parameters | LHS generated | Parameter status
simulation
parameters

a1 0.05 0.05 Const

o2 1.5 15.3 >

a3 0.1 0.35 >

04 0.008 0.008 Const.

as 0.005 0.062 >

Qs 10.0 3.9 <

a7 6.0 77.0 >
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Instance 3

Figure 14.a ABM results with default parameters

Figure 14.b ABM results with LHS generated parameters (Table 18.)

Figure 14. Graphical result difference for LHS on sample geometry 4

Taking into account the fact that all variable simulation parameters were significantly
increased, an the only change to the atherosclerotic plaque progression was in the field of
transitioning from fibrous to calcified plaque, it can be said that the ABM deals well with
pertrubations in simulation parameters. Contrary to the results from patient-specific
geometries 2 and 3 where even slight changes in the parameters caused a significan
pertrubation in the simulation, the fidelity of results was kept constant in this case. This
leads to a deduction that the simulation results are much more sensitive to the geometry
itself than to the parameter pertrubations. If the regularity of the arterial wall and lumen
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is compared betwee these three instances, it is clearly visible that geometries 2 and 3 are
much more irregular in terms of kinks and narrowings of the vessel than geometry 4.

Table 18. Parameter comparison LHS (geometry 4)

Parameter | Default simulation parameters | LHS generated | Parameter status
simulation
parameters

a1 0.05 0.05 Const

o2 1.5 4.002 >

a3 0.1 0.243 >

04 0.008 0.008 Const.

as 0.005 0.017 >

Qs 10.0 21.296 >

a7 6.0 76.77 >
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Instance 4

Figure 15. Graphical result difference for LHS on sample geometry 5.a ABM results
with default parameters

Figure 15.b ABM results with LHS generated parameters (Table 20.)

Figure 15. Graphical result difference for LHS on sample geometry 5

In the context of geometry 5, a significant increase in plaque burden is observed with both
transition of the initial fibrous plaque to calcified and progression along the vessel wall.
This was caused by an increase in all parameters driving atherosclerotic progression
except for az. The fidelity of the simulation results was once again preserved regardless
of significant changes made to the simulation parameters.
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Table 19. Parameter comparison LHS (geometry 5)

Parameter | Default  simulation | LHS generated simulation | Parameter status
parameters parameters

a1 0.05 0.05 Const

o2 1.5 6.1 >

a3 0.1 0.05 <

04 0.008 0.008 Const.

as 0.005 0.075 >

Qs 10.0 12.0 >

a7 6.0 74.0 >
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Instance 5

Figure 16.a ABM results with default parameters

Figure 16.b ABM results with LHS generated parameters (Table 20.)

Figure 16. Graphical result difference for LHS on sample geometry 5

The simulation fidelity was significantly distorted in the case of sample geometry 5 where
the simulation results suggest ,leakage” of the plaque content into the bloodstream, an
occasion that does not happen in physiological scenarios. Taking into account the changes
made to the parameters and the fact that a7 was increased more than 10-fold it can be
concluded that the simulation results are highly sensitive to the changes made to the
parameter affecting outward remodeling by tensile forces. Even though the change made
to a7 was within the defined parameter range it still disrupted the simulation. Considering
the fact that changes to the same parameter in a similar extent do not disrupt the
simulation, geometry was reobserved. What can be quickly noted is that the upper branch
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of the artery is significantly shorter. It is known from literature that arteries with
bifurcation are prone to plaque development and quick progression in this region. Taking
into account the ,leakage” happened at the bifurcation point, the abrupt results of the
simulation could be due to the combination of geometric peculiarities combined with
significant parameter pertrubations.

Table 20. Parameter comparison LHS (geometry 5)

Parameter Default simulation | LHS generated | Parameter

parameters simulation status
parameters

a1 0.05 0.05 Const

o2 1.5 4.9 >

a3 0.1 0.4 >

o4 0.008 0.008 Const.

as 0.005 0.094 >

Qs 10.0 9.3 <

a7 6.0 99.1 >
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Instance 6
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Figure 17.b ABM results with LHS generated parameters (Table 21.)

Figure 17. Graphical result difference for LHS on sample geometry 6

In the case of sample geometry 6 there is again a significant pertrubation in the simulation
results. Even though the parameter driving the arterial wall remodelling was decreased
the contribution of the increase in other parameters resulted in a significantly increased
plaque progression. Additionally, the plaque progression in this case is irregular as it is
modeled as a migration of the atherosclerotic plaque towards the arterial lumen. Even
though this can be interpreted as the breakage of the plaque and thrombus formation, a
significant increase in the parameter driving outward remodelling by tensile forces could
be a potential disruptor of the simulation.
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Table 21. Parameter comparison LHS (geometry 6)

Parameter | Default  simulation | LHS generated simulation | Parameter status
parameters parameters

a1 0.05 0.05 Const

o2 1.5 2.1 >

a3 0.1 0.4 >

04 0.008 0.008 Const.

as 0.005 0.026 >

Qs 10.0 6.5 <

a7 6.0 36.0 >
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Instance 7

Figure 18.a ABM results with default parameters

Figure 18.b ABM results with LHS generated parameters (Table 22.)

Figure 18. Graphical result difference for LHS on sample geometry 10

Sample geometry 10 has several peculiarities. Atherosclerotic plaque commonly develops
only on a single place along the artery, in close proximity to the bifurcation region.
However, in this example, there are paired instances of atherosclerotic plaque in the
upper branch of the artery and in the common branch. When it comes to the results of the
simulation, once again the ABM exhibits fidelity in results as plaque progression occurs
transversally and longitudinally without infiltration into the arterial lumen.
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Table 22. Parameter comparison LHS (geometry 10)

Parameter | Default  simulation | LHS generated simulation | Parameter status
parameters parameters

a1 0.05 0.05 Const

o2 1.5 7.4 >

a3 0.1 0.2 >

04 0.008 0.008 Const.

as 0.005 0.098 >

Qs 10.0 5.7 <

a7 6.0 30.0 >

Partial rank correlation coefficient analysis

As the graphical analysis of the results showed several peculiarities, it was necessary to
conduct a comprehensive analysis of the results obtained from LHS and to derive
conclusions about the parameters most influential on simulation results.
The Partial Rank Correlation Coefficient (PRCC) is a statistical technique commonly used
in sensitivity analysis to assess how changes in input parameters influence a model’s
output, while accounting for the effects of other variables. It is particularly advantageous
when dealing with complex systems where input parameters may be interdependent, and
the relationships between them and the output are not strictly linear. In many real-world
models, variables interact in nonlinear and often non-intuitive ways, making it difficult to
identify which inputs have the most significant effect on the results. PRCC addresses this
challenge by providing a rank-based correlation measure that can capture monotonic
relationships, which are relationships where variables move consistently in one direction,
but not necessarily in a linear fashion. PRCC is applied in the sensitivity analysis of
systems such as structural models, where various design parameters (material
properties, load conditions, geometric configurations) need to be optimized. By
identifying which parameters have the most significant impact on the system'’s behavior,
engineers can make informed decisions about resource allocation or design
modifications.
At its core, PRCC is built on Spearman’s rank correlation coefficient, which measures the
strength and direction of the monotonic relationship between two ranked variables. This
makes PRCC well-suited for models where traditional linear correlation methods may fall
short because the relationships between inputs and outputs are more complex. While
Spearman’s correlation is useful for bivariate analysis, PRCC extends this to a multivariate
context by adjusting for the presence of multiple variables. This adjustment isolates the
unique contribution of each input parameter on the output, even when other inputs are
correlated with both the parameter and the outcome. This “partial” aspect of PRCC is what
makes it so powerful. In traditional sensitivity analysis, correlations might be computed
directly between each input and the output, but these raw correlations could be
misleading due to the confounding effects of other variables. PRCC, on the other hand,
controls for these confounding effects, ensuring that the influence of one parameter is
evaluated while holding the others constant.
To compute PRCC, the process involves the following key steps:
¢ Ranking the data: First, all data (inputs and output) are converted into ranks,
which allows PRCC to focus on the relative ordering of data rather than their
absolute values. This is particularly useful in scenarios where the inputs and
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outputs are measured on different scales or where the exact values are not as
important as their ordering.

Regression to adjust for other variables: For each input parameter, a regression
analysis is performed with respect to all other input variables. This allows the
technique to remove the shared variability between the parameter being analyzed
and the other inputs. Essentially, it computes residuals that represent the portion
of the parameter that cannot be explained by the other inputs.

Rank correlation of residuals: Next, a rank correlation (Spearman’s) is computed
between the residuals of the input parameter and the residuals of the output
variable, ensuring that the relationship being evaluated is independent of the
effects of other inputs.

Interpret the PRCC value: The PRCC value ranges from -1 to 1. A PRCC close to 1
indicates that the input has a strong, positive monotonic relationship with the
output, meaning that as the input increases, so does the output, even after
controlling for the other inputs. A PRCC near -1 indicates a strong, negative
monotonic relationship, where increases in the input are associated with
decreases in the output. A PRCC around 0 suggests no significant relationship
between the input and output when other factors are accounted for.

PRCC offers several advantages, making it a valuable tool for analyzing complex systems:

Handling nonlinearity: Traditional sensitivity analysis methods like Pearson
correlation assume linear relationships between inputs and outputs. PRCC relaxes
this assumption by focusing on monotonic relationships, making it more flexible
and suitable for systems with nonlinear dynamics.

Controlling for confounding variables: One of PRCC’s primary strengths is its
ability to control for the effects of other input parameters. In many models,
parameters are interrelated, and simply looking at their raw correlation with the
output might lead to incorrect conclusions. PRCC removes the effects of these
confounding variables, allowing for a clearer understanding of each input’s unique
contribution to the output.

Robustness to outliers and non-normal distributions: Because PRCC is based on
rank correlation, it is less sensitive to outliers or the distribution of the data. This
makes it particularly useful in real-world applications where input data might not
follow a normal distribution, or where occasional extreme values could skew the
results of traditional correlation methods.

Applicable in high-dimensional systems: PRCC is well-suited for analyzing models
with many input parameters, as it systematically adjusts for the effects of multiple
variables. This makes it useful in fields like environmental science, epidemiology,
and engineering, where models often have dozens of inputs and complex,
interdependent relationships between variables.

Interpretable results: The results of a PRCC analysis are straightforward to
interpret. Each input is assigned a PRCC value that indicates its relative importance
in driving the output, which allows researchers to easily identify the most
influential parameters. This information can be crucial for model validation,
refinement, and policy decisions in applied fields.

Figures 19-22 show the PRCCs between the variable model inputs (a2, a3, a5, a6 and a7)
and target model outputs such as arterial wall, arterial and final content of fibrous plaque
type and calcified plaque type respectively.
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Figure 19. PRCC for arterial lumen

As it can be seen from Figure 19. a2, a3, o5 and a6 exhibit relatively low but statistically
significant PRCC. This implies that the input parameters have a meaningful influence on
the output, even if the relationship is not extremely strong. This indicates increasing
coefficients of SMC proliferation, lipid infiltration and outward remodeling driven by
shear forces leads to a slight but consistent reduction in a physiological outcome, which
was expected as all of these parameters should stimulate increased plaque growth thus
constricting the arterial lumen.
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Figure 20. PRCC for arterial wall
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There are no statistically significant PRCC scores for the influence of variable simulation
parameters on remodeling of the arterial wall. The arterial wall's response might be
driven by a combination of factors working together, rather than any single parameter
exerting a dominant influence.

PRCC for Fibrous plaque
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Figure 21. PRCC for fibrous plaque

The only parameter shown to be statistically significant influence on fibrous plaque
decrease is the probability of lipid infiltration. From a biological point of view, lipid
infiltration leads to plaque progression towards transition to calcified plaque.
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Figure 22. PRCC for calcified plaque
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Variable parameters a2, a4, a5, a6 show a statistically significant positive PRCC while a7
shows a relatively low but statistically significant PRCC. A positive PRCC for a2 suggests
that increased smooth muscle cell activity contributes to plaque growth, while a4
indicates that weakening of the extracellular matrix exacerbates arterial occlusion.
Similarly, a5 plays a crucial role in plaque formation by increasing lipid accumulation
within the artery and a6 positively affects the lumen, suggesting that hemodynamic forces
help maintain or expand the arterial diameter, while a7 shows a weaker, but still
significant, influence on outward remodeling. These findings underscore the complex
interplay between cellular proliferation, lipid dynamics, and mechanical forces in the
progression of atherosclerosis.

4.3. Surrogate model

Computational modeling framework of coupled ABM and FEM is powerful but it comes at
a price of time intensity, lack of flexibility and specific-knowledge required to conduct it.
As the aim of biomedical engineering is to simplify processess in healthcare making it
more efficient and cost effective, thus enhancing the quality of treatment, an Al-based
system for prediction of the extent of plaque progression was developed.

A vast amout of data was generated through LHS and that data was used for the
development of the Al algorithm. The workflow is presented in Figure 23.
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.dat file PAKAtheroABM steps)

Construction of a . Extraction of plaque
X Extraction of data from 5
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construction & validation

Surogate model ideation

Functional surogate
model

Figure 23. Workflow surrogate model development

The development of a surrogate model for estimating the class of plaque progression
based on ABM parameters and initial plaque content involves several critical steps,
starting from data preparation to model evaluation. This process aims to replace detailed
simulations with a simplified, yet accurate, predictive model, significantly reducing
computational time and complexity while maintaining acceptable levels of prediction
accuracy.
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4.3.1.Dataset curration

The success of a surrogate model relies heavily on the quality and comprehensiveness of
the dataset used to train and validate the model. In this work, the dataset was constructed
from detailed simulations of plaque development within the arterial wall, using an ABM
framework. This approach allowed for the precise modeling of complex biological
interactions that occur during plaque formation, providing a rich source of data for
building an accurate and efficient surrogate model. The data comprises two fundamental
components: initial plaque content and ABM parameters.

The initial plaque content refers to the baseline state of the arterial plaque before any
progression or treatment interventions. This data is critical because it establishes the
starting point from which plaque growth and progression are simulated. In biological
terms, the composition and state of the plaque at this initial stage determine how it
evolves over time, driven by cellular and molecular interactions. The initial plaque
content serves as the input for ABM simulations, dictating how the plaque behaves under
various conditions. The heterogeneity in this starting content provides a wide range of
possible plaque development outcomes, which the surrogate model aims to predict.

In addition to the initial plaque content, the dataset includes a series of ABM parameters
defined in .. These parameters define the rules and mechanisms governing the behavior
of various agents (e.g., cells, molecules) within the ABM. They represent the dynamic
processes that drive plaque progression over time.

The key ABM parameters used in this study are:

e Cellular proliferation rates: These rates govern how quickly smooth muscle cells
and macrophages divide and accumulate within the plaque. For instance, smooth
muscle cells can proliferate in response to inflammatory signals, contributing to
the thickening of the plaque’s fibrous cap. The rate of macrophage proliferation
also impacts inflammation and plaque vulnerability.

e ECM degradation rate: The balance between ECM production and degradation
affects plaque stability. Excess ECM degradation, often driven by enzymes secreted
by macrophages, can weaken the plaque’s structure and increase the risk of
rupture. Conversely, excessive ECM production can lead to excessive thickening of
the plaque, potentially narrowing the arterial lumen.

e Lipid infiltration and transport dynamics: The rate at which lipids infiltrate the
arterial wall and their subsequent transport across different layers of the artery
are key drivers of plaque progression. The ABM simulates how lipids accumulate
in the plaque and trigger further inflammatory responses, driving the formation of
foam cells.

e Parameters driving the arterial wall remodelling on the meso-scale in response to
the micro-scale ABM

Each of these parameters influences the evolution of the plaque in a unique way,
contributing to the overall complexity of the disease process. For example, higher cellular
proliferation rates may lead to a more aggressive form of plaque growth, while increased
ECM degradation could result in a more vulnerable plaque prone to rupture.

Given the inherent complexity of the biological processes involved in plaque

development, it is critical to ensure that the dataset covers a wide range of possible
scenarios. In this study, LHS was used to vary the initial plaque content and ABM

77



parameters across a wide range of plausible values. This approach ensures that all areas
of the parameter space are sampled adequately, which is particularly important when
modeling complex, non-linear systems like plaque progression. By using LHS, the study
was able to generate a diverse set of simulation runs, each representing different
combinations of:

- Probability of mitosis and apoptosis

- Smooth muscle cell (SMC) division in the intimal layer

- Extracellular matrix (ECM) deposition in intimal layer

- ECM deposition in medial layer

- SMC division in medial layer

- Outward remodeling driven by shear forces

- Outward remodeling driven by tensile forces

Each simulation run represents a unique instance of plaque development under specific
conditions, providing the dataset necessary for training the surrogate model.

The LHS approach was used to generate 1500 simulations, each representing different
combinations of initial conditions and ABM parameters. These simulations were run
through the agent-based model, which tracks the progression of the plaque over time. The
simulation outputs include the final plaque state and the progression class (i.e., no
progression, moderate progression, or severe progression), which serves as the target
variable for the surrogate model.

The resulting dataset includes a comprehensive range of conditions, making it suitable for
training a surrogate model capable of predicting plaque progression based on the initial
plaque content and ABM parameters alone. This dataset forms the basis for all subsequent
steps in the surrogate model development process, including feature engineering, model
training, and evaluation.

4.3.2.Data retrieval

Once the simulations were completed, the focus shifted to retrieving the critical data for
analysis, specifically from large ".vtk' files that contained information about the
progression of atherosclerotic plaque within arteries. .vtk files store information about
points (vertices), connectivity (how those points form shapes like triangles or polygons),
and attributes (e.g., color, scalar values, or vector fields) for visualization and analysis of
the agent based simulation. These simulations had been executed across multiple cases,
each stored in a dedicated folder. Each folder represented a different simulation scenario
with unique input parameters that influenced the progression of plaque. The data
extraction process was essential for analyzing how various factors affected plaque
buildup and arterial occlusion over time.

Initially, the challenge was to parse through the ".vtk" files. These files, often used for
scientific data visualization, contained massive amounts of data across hundreds of
thousands of lines. The relevant data regarding plaque progression was stored between
specific lines and columns. It was essential to focus on just this subset to reduce
unnecessary processing overhead. In this particular case, the lines of interest ranged from
487883 to 532702. Additionally, the desired data was located within certain columns of
these lines (columns 5 to 7), meaning that the script had to be precise in targeting the
correct sections of the file.

Given the size of the files, manually opening and reviewing them was impractical.
Therefore, an automated approach was necessary. A Python script was developed to

78



systematically go through each folder, open the ".vtk' files, read through the relevant lines,
and extract the specific column data. The files 'PAKF0001.vtk and "PAKF0015.vtk™ were
of particular interest since they contained critical data snapshots at different time points
in the simulations. These two files represented the progression of the plaque at different
stages, and the goal was to compare the data between these stages to understand how the
plaque evolved under different conditions.

The script was designed to iterate over all the folders named according to a specific
pattern, such as "abm0", "abm1", and so on. It ensured that only folders containing
simulation data were processed, thus avoiding any irrelevant files. For each folder, the
script accessed the ".vtk' files and read through the required line ranges, collecting the
data from the necessary columns. This data was then stored in a Pandas DataFrame, a
flexible and powerful data structure used for handling tabular data in Python.

Once the data from the two ".vtk' files was extracted and stored in the DataFrame, the next
step was to save this data into an Excel file. The script created a new Excel file for each
simulation folder, with the data from both "PAKF0001" and 'PAKF0015" represented as
separate columns in the spreadsheet. 'PAKF0001" and 'PAKF0015" contain the simulation
results for 2 distinct datapoints in a simulation cycle. This allowed the results of each
simulation to be easily accessed and analyzed in Microsoft Excel or any other software
that could handle ".xlsx files.

The initial process involved saving each Excel file in a corresponding subfolder within the
output directory. However, as the requirements evolved, it became clear that a more
efficient approach was needed to centralize all the Excel files into a single directory,
making them easier to access and manage. The code was adjusted accordingly to bypass
subfolder structures and place all Excel files directly into one folder.

After the initial data extraction and storage, the focus shifted toward analyzing the
transitions between the stages of plaque progression represented by the data in
"PAKF0001" and "PAKF0015". This required calculating the changes in plaque categories
between the two stages, essentially identifying how frequently the arterial tissue behaved
and how transitions from 1 (vessel lumen) and 2 (vessel wall) to 3 (fibrous plaque) and
4 (calcified plaque) occured and to which extent. The transitions were critical for
understanding the dynamics of plaque development and how different simulation
parameters affected these dynamics.

To handle this, the data was compared between the two columns of the Excel files
corresponding to 'PAKF0001" and 'PAKFO0015". The transitions were categorized into
different scenarios, such as plaque moving from category 1 to category 2, or from category
2 to category 4. A variety of transition types were considered to capture all possible
changes, including combinations such as moving from category 1 to either category 3 or
4. The goal was to generate a detailed profile of how the plaque progressed in each
simulation.

For each transition type, the total number of occurrences was calculated, and then these
occurrences were converted into percentages to give a clearer picture of the distribution
of transitions. These percentages reflected the proportion of transitions relative to the
total number of data points, allowing for easy comparison between different simulations.
Finally, the percentage transitions were arbitrarily classified into three classes to capture
the heterogeneity of the plaque progression cases :
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e 0 - ,insignificant plaque progression“( <0.05%)
e 1 - significant plaque progression“ (0.05%-0.15%)
e 2 - severe plaque progression“ (>0.15%)

After the transition analysis for all simulations was completed, the results were compiled
into a single Excel workbook. Each sheet in the workbook corresponded to one simulation
case and contained the detailed transition analysis for that case. The final output provided
a comprehensive overview of how plaque progressed across all the simulations, with easy
access to both the raw extracted data and the calculated transition percentages.

4.3.3. Data analysis

Once the data from the simulations had been successfully retrieved and organized into
Excel files, the next step was conducting a detailed statistical analysis. This analysis aimed
to uncover patterns, correlations, and key insights from the large dataset of plaque
progression parameters across various simulations. The process began with basic
descriptive statistics to provide an overview of the data and then moved into more
advanced techniques such as Principal Component Analysis (PCA) for dimensionality
reduction.

The first step in the statistical analysis involved calculating descriptive statistics for each
feature extracted from the simulation data. These statistics included measures such as the
mean, median, standard deviation, and interquartile range for each variable. Given that
the simulations involved multiple parameters—each influencing the progression of
atherosclerotic plaque—it was critical to understand the distribution of these parameters
individually before delving into more complex relationships (Figure 24).

80



Descriptive Statistics
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Figure 24. Descriptive statistics of the dataset showing min, max, mean, STD, 25%, 50%
and 75% characteristics of the data

The descriptive statistics provided a foundational understanding of how each parameter
behaved across different simulations. As the aim of conducting a substantial number of
simulations to cover as much as possible variability and different simulation cases it was
necessary to observe the statistical behavior of individual parameters. Obserbving the
standard deviations revealed the approximate discrepancies amongst different
simulation scenarios, important to grasp weather the dataset covers enough variability
while analysis of min and max for each parameter enabled understanding weather
extremes are covered for parameters. For example, examining the range and variability
in plaque thickness or changes in material composition helped to identify any outliers or
extreme values that might affect the overall analysis and contribute to extreme cases to
cover peculiar pathologies. Skewness and kurtosis were also calculated to assess the
symmetry and peakedness of the data distributions, giving further insights into the nature
of the dataset.

In this stage, histograms were used to visualize the spread of each variable. These
visualizations helped to identify any non-normal distributions or skewed data, both of
which would need to be addressed before proceeding to more advanced analyses. For
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instance, if a parameter exhibited a highly skewed distribution, transformations such as
log or square-root transformations were considered to normalize the data, ensuring it
was suitable for subsequent steps.
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Figure 25. Distribution of parameter az.

Parameter o exhibits a highly skewed distribution to the left. When a distribution is
characterized by a left skew, or negative skewness, it indicates that the majority of the
data points are concentrated on the right side of the distribution, with the tail extending
to the left. This scenario often suggests that while most of the values are relatively high,
there are a few significantly lower values that are pulling the average down. The
distribution of the parameter which represents the probability of smooth muscle cell
(SMC) proliferation in the tunica media, exhibits a prominent peak on the left side of the
distribution curve. This indicates that the majority of the sampled data points cluster
around relatively low probabilities of SMC proliferation, suggesting that under most
physiological conditions, SMC proliferation is limited. This leftward concentration is
typical of a distribution where most observations reflect normal physiological states,
where SMC activity is kept in check to maintain vascular homeostasis. However, the
pronounced peak indicates that, while the baseline probability of SMC proliferation is low
for most conditions, it is crucial to recognize the context in which these low values exist.
The peak signifies that under typical scenarios—where there are no significant
pathological stimuli—the probability of SMC proliferation remains minimal. Such
conditions might involve a stable vascular environment with balanced biochemical
signals, low levels of inflammation, and normal mechanical stresses.
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Figure 26. Distribution of parameter as

The long right tail of the skewed a3,0r positive skewness, indicates that most of the data
points are concentrated on the left side of the distribution, while a few high values extend
the tail to the right. This type of distribution is often seen in situations where the majority
of observations are relatively low, but there are a small number of exceptionally high
values that significantly influence the mean. It suggests that while most of the sampled
conditions represent lower probabilities of SMC proliferation—indicating a typical
response under most physiological conditions—there are specific cases where the
probability spikes to much higher levels. These high-probability cases are likely tied to
scenarios where multiple influential factors align favorably, such as elevated
concentrations of growth factors, the presence of certain inflammatory signals, or
particular biomechanical stresses within the vessel wall. The presence of these outlier
conditions is crucial to understand because they can lead to significant pathological
outcomes, such as excessive intimal hyperplasia or plaque formation. The LHS approach
ensures that these extreme values are not merely a product of random chance but are
systematically included in the analysis. Consequently, the long right tail in the resulting
distribution reflects a genuine risk of heightened SMC proliferation under specific, albeit
less frequent, conditions.
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Figure 27. Distribution of parameter as

The parameter as, representing the probability of lipid infiltration, displays a nearly flat
distribution across the range of sampled values. This characteristic indicates a relatively
uniform likelihood of lipid infiltration occurring within the studied context, suggesting
that the conditions influencing this process do not lead to significant peaks or troughs in
probability. In a scenario where the probability distribution is flat, it implies that lipid
infiltration can happen across a wide range of circumstances without being significantly
influenced by any specific factor. Essentially, the chances of lipid accumulation remain
consistent, irrespective of variations in other parameters or environmental conditions.
This could be indicative of a physiological state where lipid infiltration is a common
process occurring under various influences, rather than a response that is tightly linked
to specific triggers or conditions. The flatness of the distribution suggests that lipid
infiltration is a somewhat ubiquitous process within the arterial wall, potentially
reflecting a baseline state where lipids are consistently present and integrated into the
vessel environment. Factors contributing to this uniformity might include steady-state
levels of circulating lipoproteins, consistent dietary influences, or a relatively constant
state of endothelial function, which does not fluctuate dramatically across the sampled
conditions. A flat distribution may also indicate that there is a lack of strong pathological
stimuli that would otherwise concentrate the probability of lipid infiltration in particular
scenarios. In other words, while lipid infiltration can occur, it does not appear to be
heavily influenced by extreme conditions or changes in parameters, thus leading to a
more even representation across the entire range.
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Figure 28. Distribution of parameter as

The parameter o, which represents arterial remodeling driven by shear forces, exhibits
a distribution characterized by a pronounced peak on the left side and a sharp drop-off
towards the right. This shape suggests that most of the observations cluster around lower
values, indicating that arterial remodeling due to shear forces typically occurs at minimal
levels. The large peak signifies that the majority of cases involve mild to moderate
remodeling in response to normal physiological conditions. This clustering of values at
the lower end implies that under typical circumstances—such as healthy blood flow
patterns—the remodeling processes in the arterial wall are subtle. These adaptations can
include slight adjustments in smooth muscle cell behavior, minor changes in extracellular
matrix composition, or other physiological mechanisms that support vascular function
without leading to significant alterations in arterial structure. The rapid drop-off to the
right indicates that as we move toward higher levels of o, there are far fewer instances
of pronounced arterial remodeling. This steep decline suggests that significant
remodeling events driven by shear forces are relatively rare. When they do occur, they
may be associated with specific pathological conditions, such as abnormal blood flow
patterns, increased turbulence, or heightened hemodynamic stress. Such conditions can
lead to substantial changes in arterial architecture, potentially contributing to vascular
diseases or conditions like atherosclerosis. The presence of this distribution highlights
the importance of understanding the normal range of arterial remodeling driven by shear
forces. Most scenarios involve modest remodeling that is essential for maintaining
vascular health. However, the few high values that fall off sharply to the right indicate
potential risk factors or pathological states that warrant attention. Recognizing these rare
but significant remodeling events is crucial for developing strategies to address and
mitigate adverse cardiovascular outcomes.

85



Distribution of a7
500

400

w
o
o

Frequency

200

100

0 20 40 60 80 100
a7’

Figure 29. Distribution of parameter a;

The parameter a7, which represents remodeling driven by tensile forces, displays a
distribution that is largely flat with a distinct peak on the left side. This shape indicates
that most of the values are concentrated around lower levels of remodeling, suggesting
that tensile forces typically exert a moderate influence on arterial structure. The presence
of a prominent peak on the left signifies that the majority of cases involve minimal to
moderate remodeling in response to normal tensile stresses experienced by the arterial
walls during regular physiological conditions. These low-level adaptations are essential
for maintaining the structural integrity and functionality of the artery under the forces
exerted by blood flow. They may involve subtle changes, such as slight alterations in the
composition or organization of the extracellular matrix or modest adjustments in smooth
muscle cell activity. The flat nature of the distribution indicates that there is a broad range
of values around this peak, suggesting that while most cases involve lower levels of
remodeling, there is a significant variability in how arterial walls respond to tensile forces.
This variability could be influenced by factors such as individual differences in vascular
biology, local hemodynamic conditions, and the mechanical properties of the arterial wall
itself. However, the lack of significant values extending towards the right side of the
distribution implies that high levels of remodeling driven by tensile forces are relatively
rare. When they do occur, they may be associated with specific conditions, such as
pathological hypertension or significant vascular stress, which can lead to excessive
remodeling that compromises arterial function.
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Figure 30. Distribution of “initial plaque content” variable

The initial distribution of plaque content exhibits a unique pattern characterized by
several peaks on the left, followed by a gap, and then additional peaks on the right. This
multimodal distribution suggests a complex relationship between various factors
influencing plaque development within the arterial walls. The presence of multiple peaks
on the left side of the distribution indicates that there are several common states of low
plaque content, where the majority of cases fall. These peaks likely represent typical
physiological conditions where minimal plaque accumulation occurs, reflecting healthy
arterial function and effective regulatory mechanisms that prevent excessive lipid
deposition and inflammation. Such states may be influenced by factors such as optimal
shear stress, the presence of protective endothelial functions, and effective clearance of
lipids and inflammatory cells from the arterial wall. The gap between the left and right
peaks signifies a notable absence of cases with moderate plaque content, suggesting that
this range may represent a transitional phase where arterial health is particularly
vulnerable. This void could indicate that under normal physiological conditions, arteries
tend to either remain relatively clear of plaque or progress to significant plaque
accumulation due to a combination of risk factors such as elevated lipid levels,
inflammation, and mechanical stress. The peaks on the right side of the distribution
represent scenarios of higher plaque content, indicating that while most conditions tend
to favor lower plaque levels, there are specific pathological states where significant
plaque accumulation occurs. These peaks might reflect conditions of advanced
atherosclerosis, where a combination of risk factors, such as chronic inflammation,
prolonged exposure to high lipid levels, and mechanical stress, converge to drive
substantial plaque formation.

Once the descriptive statistics were reviewed, the next step involved calculating
correlation matrices to assess the relationships between the different variables. This
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allowed for an exploration of how different simulation parameters influenced each other.
Pearson correlation coefficients were used to quantify the strength and direction of linear
relationships between variables, while Spearman's rank correlation was used for non-
linear relationships.
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Figure 31. Correlation heatmap for input and output variables

By examining the correlation matrix (Figure 31), it became clear that none of the
parameters exhibit strong correlation neither with one another nor with the output. As
atherosclerosis is a process dependent on parameters that do not behave in congruency
with one another, the correlation matrix of this kind was expected and it confirmed that
the simulation instances generated by LHS mimic real-world conditions and that the
creation of a realistic virtual population was successful. Understanding these
relationships was important to note that complex machine learning algorithms will be
necessary in order to draw inference and recognize patterns in this data.

Recognizing and addressing this issue early was key to ensuring that the next phases of
analysis, such as PCA, were robust and reliable. Given the high dimensionality of the
dataset, multiple parameters for each simulation case, PCA was applied to reduce the
dimensionality and simplify the complexity of the data while retaining as much variance
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as possible. The main goal of PCA was to transform the data into a new set of uncorrelated
variables called principal components. These components represented the directions in
which the data varied the most, allowing for a more efficient exploration of the key factors
influencing plaque progression.

The PCA process began by standardizing the data, ensuring that each variable had a mean
of zero and a standard deviation of one. This step was crucial because PCA is sensitive to
the relative scales of the variables; without standardization, variables with larger scales
could dominate the first principal components, skewing the results. Once the data was
standardized, the PCA algorithm was applied. The first principal component (PC1)
explained the maximum amount of variance in the data, followed by the second
component (PC2), and so on.

A pairplot of features per class was used to visualize the percentage of variance explained
by each principal component, helping to determine how many components should be
retained for further analysis. In this case, the first few components typically explained a
significant proportion of the variance, allowing the dataset to be reduced to a handful of
principal components without sacrificing much information.
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Pairplot of Features by Class
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Figure 32. Pairplots of features per class

The pairplot of features per class (Figure 32) provides the same conclusion as the
correlation matrix and that is the fact that the features exhibit very low interclass
variability and very high intraclass variability making them overlap in all cases except
when plaque content (response variable) is considered.

After application on individual variables, PCA was applied to the entire dataset in order
to determine weather additional feature engineering will be necessary and to gain
insights into the underlying structure of the data. Each principal component was a linear
combination of the original variables, and the loadings of these variables indicated their
contribution to the component. By examining the loadings, it was possible to understand
which variables were the most important in driving plaque progression. For instance, PC1
might heavily load on variables related to arterial stiffness and plaque thickness,
indicating that these factors were the primary drivers of variance in the data. Additionally,
scatter plots of the first two or three principal components were created to visualize how
the simulation cases clustered in the reduced-dimensional space. These plots helped
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identify any natural groupings or clusters of simulations, which could indicate different
progression patterns. Outliers could also be easily spotted in these plots, offering a way
to flag simulations with unusual behavior that warranted further investigation.

PCA Results (2 Components)
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Figure 33. PCA results

After examining the PCA graph (Figure 33), which illustrates the distribution of the
dataset in its original feature space, it is essential to consider the implications of reducing
the dimensionality of the data. By transforming the data into a lower-dimensional space,
we can effectively capture the most significant variance while minimizing the noise
associated with irrelevant features. This process not only simplifies the complexity of the
data but also enhances visualization, allowing for more straightforward interpretation of
the underlying structure. The subsequent analysis was intended to focus on how this
reduction facilitates better classification performance and provides clearer insights into
the relationships among the data points.



Clusters in PCA-Reduced Feature Space
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Figure 34. Clusters in PCA-reduced feature space

Due to the complexity of the problem and aforementioned high intraclass variability
combined with low interclass variability, dimensionality reduction did not contribute to
enhancing the PCA results. This has lead to a conclusion that significant data
preprocessing will be necessary prior to the development of the machine learning
algorithm.

4.3.4. Dataset preprocessing

Entire statistical analysis was done with the purpose of understanding the dataset better
and being able to optimize the preparation of thereof for implementation of the Al
algorithm. The analysis began by preparing the environment with the necessary tools for
handling imbalanced data and Excel files. The dataset, which contained both input
features and an output variable, was then uploaded from an Excel file. The relevant input
features were selected for analysis, and the output variable, representing the target for
classification, was extracted. This step ensured that the data was correctly formatted and
ready for splitting into training and testing subsets.

To develop and validate a predictive model, the dataset was divided into two parts: 80%
was allocated for model training, and the remaining 20% was reserved for testing. A fixed
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random seed was used to ensure consistency across different runs of the analysis,
allowing for reproducibility in the results.

Given that the dataset exhibited class imbalance, an advanced oversampling technique,
Adaptive Synthetic Sampling (ADASYN), was applied. This method generates synthetic
samples for underrepresented classes by creating data points that are similar to the
minority class but slightly varied, ensuring a more balanced distribution. The goal was to
equalize the representation of all target classes, which would otherwise lead to biased
model training. The synthetic data generation process was tailored to create an equal
number of samples for each class, ensuring that all classes were sufficiently represented.

Following the resampling process, the newly balanced dataset was organized and saved
for further analysis. The synthetic samples and the target labels were combined and
exported to an Excel file, preserving the resampled data for future model development.

To verify the effectiveness of the resampling technique, the distribution of the classes in
the new dataset was assessed. The analysis confirmed that each class was now
represented equally, validating the success of the synthetic sampling approach. By
addressing the issue of class imbalance, the dataset was better prepared for model
training, ensuring that the subsequent predictive models would not be biased toward the
overrepresented classes and could produce more reliable and generalized predictions.

4.4. ANN model

The development of the classification model was introduced with challenges primarily
arising from significant intraclass variability, which adversely affected predictive
performance. To address these challenges, a systematic approach was adopted,
incorporating both class and parameter weights alongside regularization techniques and
optimized activation functions. This comprehensive strategy was essential in achieving a
robust and reliable model capable of accurately predicting plaque progression in
atherosclerosis.

The issue was characterized by a disproportionate distribution of samples or intraclass
variability across classes. Even though the sample size was consistent accross classess, an
issue arises with overexpressed interclass similarity and lack of overall intraclass
variability, leading to biased predictions, where the model favors outcomes more
represented in a certain class. To counter this, class weights were assigned to each class,
strategically focusing on enhancing the model's sensitivity to the most sensitive class, that
being ,insignificant atherosclerotic progression“

Class weights were calculated based on the inverse frequency of each class, reflecting the
necessity for the model to prioritize learning from underrepresented samples. For
instance, class 0 was assigned a weight of 3.0, while classes 1 and 2 received weights of
1.5 and 2.5, respectively. By implementing these weights, the model was empowered to
treat the loss function as a more balanced representation of the underlying class
distribution, thereby compensating for the imbalance.

In conjunction with class weights, parameter weights were integrated into the training
process to further refine the model's learning dynamics. Parameter weights were
assigned based on the importance of each feature, which enabled the model to prioritize
more influential variables during training. This adjustment facilitated enhanced learning
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from critical features, allowing the model to effectively distinguish between classes. The
dual implementation of class and parameter weights resulted in substantial
improvements in performance metrics, such as accuracy, recall, and F1 scores,
particularly for the minority classes. The model's ability to correctly classify instances
from these underrepresented groups improved significantly, thereby leading to a more
equitable performance across all classes.

To further mitigate the risk of overfitting—a common issue in machine learning where
the model learns the noise in the training data rather than the underlying patterns—
regularization techniques were employed. L2 regularization (also known as weight
decay) was incorporated into the loss function, which penalizes large weights and
discourages the model from fitting noise in the training data. This technique is particularly
beneficial in high-dimensional spaces, where overfitting is prevalent due to the
abundance of features relative to the number of training samples. By applying L2
regularization, the model was encouraged to learn a simpler representation of the data,
which improved generalization to unseen data. Regularization not only enhanced the
model’s robustness but also led to improved interpretability of the learned parameters.
The model was able to focus on the most relevant features while minimizing the impact
of irrelevant or redundant features, thereby streamlining the decision-making process.
This strategic modification was pivotal in enhancing the model's overall reliability and
predictive capability.

The choice of activation functions significantly influenced the model’s performance and
learning efficiency. The Rectified Linear Unit (ReLU) activation function was utilized in
the hidden layers, promoting faster convergence and allowing the model to capture
complex relationships within the data effectively. ReLU addresses the vanishing gradient
problem, which is common in traditional activation functions like sigmoid or tanh, by
maintaining non-zero gradients for positive input values. This characteristic enables
deeper networks to learn more efficiently, as the gradients do not diminish as they are
backpropagated through the network layers. The softmax activation function was
employed in the output layer, generating a probability distribution across the target
classes. This approach allowed for interpretable output, where the class with the highest
probability score was selected as the model's prediction. The softmax function effectively
normalized the output scores, making it easier to assess the relative confidence of the
model in its predictions. The combination of ReLU and softmax functions ensured that the
model was not only capable of learning complex patterns but also provided a probabilistic
framework for decision-making.

Two architectures were intensively tested to determine the impact of hyperparameter
adjustment and architecture remodeling on the prediction results.
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Table 23. Comparison of key ANN parameters between the two developed architectures

Parameter Definitio | Purpose Impact on Mechanis | Architectur
n Training m elVS2
Regularizatio | Controls Prevent Affects model | Adds L2 (0.01)
n Strength penalty on | overfittin | complexity; penalty to VS
weights g high = the loss L2 (0.0001)
for underfit, low | function
complexit = overfit
y
Training Number Determin | Low = Each epoch | 100 epochs
Duration of e learning | underfit, high | involves VS
(Epochs) complete | time = overfit forward 400 epochs
passes and
over the backward
dataset pass
Batch Size Number Controls | Small = noisy | Subset of Batch size
of update but better data used 16
samples frequency | generalizatio | for gradient VS
processed n, large = computatio | Batch size 8
before smoother but | n
weight potential
updates overfit

Regularization strength is a critical hyperparameter that plays a vital role in managing
model complexity. Its main purpose is to prevent overfitting, which occurs when a model
learns not only the underlying patterns in the training data but also the noise.
Regularization achieves this by adding a penalty to the loss function, which discourages
the model from assigning excessive importance to any particular weight. When
regularization strength is high, the model is forced to simplify, which can lead to
underfitting; in other words, it may not learn enough from the data. Conversely, when the
regularization strength is low, the model can become too complex, capturing not just the
essential features of the data but also the random fluctuations, resulting in overfitting.
Different types of regularization, such as L1 and L2, have unique characteristics, with L1
potentially leading to sparse solutions (many weights becoming zero) and L2 shrinking
all weights but retaining more features. Overall, the choice of regularization strength is
crucial as it directly impacts the model's generalization ability. The choice of a lower L2
regularization strength (0.001 VS 0.1) may significantly affect the model's ability to
generalize beyond the training data. Regularization is intended to prevent overfitting by
penalizing overly complex models. A lower L2 regularization strength means that the
model is less constrained, allowing it to assign larger weights to features. While this can
help the model capture more nuances in the training data, it may also result in a higher
risk of overfitting. Consequently, the model might perform well on the training dataset
but struggle with unseen data due to its excessive reliance on specific patterns that do not
hold in a broader context. Therefore, while a lower regularization strength can lead to
improved performance during training, it can ultimately compromise the model’s
generalization ability.
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Training duration, measured in epochs, refers to how many times the model is exposed to
the entire training dataset. The main goal of determining the right number of epochs is to
ensure that the model learns effectively from the data. If the number of epochs is too low,
the model may not have enough opportunities to learn, resulting in underfitting. This
means the model fails to capture essential patterns within the data. On the other hand, too
many epochs can lead to overfitting, where the model becomes excessively tailored to the
training data and performs poorly on unseen data. To strike the right balance, validation
loss during training is monitored and strategies like early stopping employed, which halts
training when performance on a validation set begins to degrade. Thus, training duration
is about finding the sweet spot where the model learns adequately without memorizing
the training data. By opting for a longer training duration, the model has more
opportunities to learn from the training data. This extended exposure can be beneficial,
particularly if the training set is complex or large. However, it also increases the risk of
overfitting, especially if the model is not regularized adequately. Monitoring validation
performance is crucial during this phase to ensure that the model is improving its ability
to generalize rather than merely memorizing the training examples.

Batch size is the number of training samples processed before the model's weights are
updated. It directly influences how the model learns during training. Choosing a small
batch size results in more frequent updates to the model's weights, which can lead to
noisier gradient estimates. This noise can sometimes help the model generalize better, as
it introduces variability in the training process. However, smaller batches can also slow
down training since more iterations are needed to complete an epoch. In contrast, a larger
batch size means fewer updates per epoch, leading to smoother gradient estimates. While
this can accelerate training and make better use of computational resources (like GPUs),
it may also lead to poorer generalization, as the model could get stuck in sharp minima
that don't perform well on unseen data. Therefore, the choice of batch size should
consider the trade-offs between computational efficiency and model performance.
Choosing a smaller batch size means the model updates its weights more frequently.
While this can introduce beneficial noise into the gradient estimates—potentially aiding
in convergence—it also means that each update might be less stable. The noise can help
escape local minima but can also slow down the convergence process as the model may
take longer to find the optimal solution. Additionally, because smaller batches require
more iterations to complete an epoch, this can significantly extend the total training time.

The decisions made in the second architecture reflect a careful balance between
improving model performance and managing the risks associated with overfitting. A
lower L2 regularization strength, while potentially enhancing training performance,
could hinder the model's generalization ability. Meanwhile, the combination of a longer
training duration and a smaller batch size facilitates a more nuanced learning process but
at the cost of increased training time. Together, these choices highlight the importance of
tuning hyperparameters thoughtfully to achieve a well-balanced model that performs
well on both training and unseen data.

4.4.1. ANN performance evaluation

In this section, the performance of the developed artificial neural network (ANN) is
evaluated by examining the impact of incorporating class and feature weights during
training. The objective is to assess how these adjustments affect the model's performance
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in terms of loss and accuracy, particularly in the context of an imbalanced dataset. A
comparative analysis was conducted involving two distinct training configurations for our
ANN: the standard model without any weighting and the enhanced model that utilized
class and feature weights. The standard model served as a baseline, while the enhanced
model aimed to address the inherent challenges posed by class imbalance and to amplify
the influence of critical features identified during the initial analysis.

Class weights were computed based on the frequency of each class in the dataset. This
approach ensures that the model pays more attention to underrepresented classes,
effectively countering the bias that can occur when training on imbalanced data. By
assigning higher weights to these classes, the model is encouraged to learn more from the
less frequent examples, thus improving its overall performance. Feature weights were
employed to prioritize the most influential input parameters during the training process.
This strategy enhances the model's ability to focus on features that significantly
contribute to class differentiation, potentially leading to a more nuanced understanding
of the underlying patterns within the data.

In analyzing the loss curves, the standard ANN configuration displayed significant
fluctuations throughout the training epochs. This instability suggested that the model
struggled to find a reliable convergence point, which is often indicative of overfitting—
where the model performs well on training data but poorly on validation data. Conversely,
the implementation of class and feature weights resulted in a markedly smoother decline
in both training and validation loss. The reduced variability in the loss curves reflects the
model’s improved stability, suggesting that the weights helped to regularize the training
process and enabled the ANN to generalize better to unseen data.

Loss Over Epochs

—— Training Loss
2.0 A » Validation Loss
1.8
1.6
9 1.4 -
3 ."
1.2 4 \
N
| \
1.0 ~\
«\\_\/\
08 7 O
\_\,\J’\\ NI )
0.6
0 10 20 30 40 50
Epochs

Figure 35. Loss over epochs graph for architecture 1

The first achitecture employed an early stopping method and the training was halted at
epoch 50 as convergence of training and validation loss was achieved. However, the
training and validation curves converget at loss of 0.6 which is considered high.
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Figure 36. Loss over epochs graph for architecture 2

The second architecture did not include the early stoping criterion and the training was
conducted up to 300 epochs. Even though the loss curves did not converge as in the first
case, the local minima was achieved at ~0.4 for the training dataset and ~0.25 for the
validation dataset. Hence, the predictive and generalization capabilities of the second
model were shown to improve.
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Figure 37. Accuracy plot for architecture 1

The accuracy over epochs plot for the first scenario is characteristic for significant
overfitting. The abrupt peaks in the curve indicate that the accuracy is unstable over
epochs and even though the model converges in terms of loss, its predictive accuracy is

very low (=0.7).
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Figure 38. Accuracy plot for architecture 2

Compared to the accuracy plot of the first instance, the accuracy plot for the adjusted
architecture is much smoother and training and validation accuracy converge at above
0.9 indicating very high and trustworth predictive capability of the model.

The most compelling evidence of the performance improvement emerged from the
accuracy analysis. The standard model achieved a peak validation accuracy of only 0.68,
indicating that a significant portion of predictions were incorrect, particularly for the less
frequent classes. However, when class and feature weights were introduced, the
validation accuracy soared to 0.95. This dramatic increase of 27 percentage points not
only signifies a substantial enhancement in predictive performance but also illustrates the
model's newfound capability to accurately classify instances across all classes, including
those that were previously misclassified.

Table 24. Performance metrics comparison

Performance metric | Score architecture 1 Score architecture 2
Accuracy 0.681 0.954

Recall 0.679 0.954

F1 score 0.684 0.934

MCC 0.523 0.871

Sensitivity 0.571 1.0 0.714 1.0 0.857 | 1.000
Specificity 0.733 0.933 1.0 1.0 1.0 0.929

The improvement in accuracy (Table 24) underscores the effectiveness of utilizing
weights, as it highlights the model's enhanced ability to discern between similar classes,
which is particularly vital in medical applications where accurate classifications can have
critical implications.

In order to evaluate the performance of the ANN in more detail, ROC curves, AUC scores
(Figure 39.) and precision-recall curves (.) were analzed for all 3 classes durring training.
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ROC Curves for Each Class
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Figure 39. ROC curves for each class

An AUC of 0.94, 0.96, and 0.98 for the three classes of plaque progression prediction
indicates the model's excellent discriminatory performance across all stages of
progression. The AUC of 0.94 suggests that the model is highly effective in distinguishing
the first class of plaque progression, capturing the critical risk factors associated with it.
The AUC of 0.96 for the second class indicates an even stronger capability to identify
patients at risk, implying improved sensitivity and specificity in detecting subtle changes
in plaque characteristics. Lastly, the AUC of 0.98 for the third class highlights an
exceptional classification ability, demonstrating the model's capacity to accurately
identify patients at the highest risk of plaque progression. These high AUC values signify
that the model not only excels in classifying plaque progression stages but also
underscores its potential application in clinical settings for personalized risk assessment
and management. The impressive performance across all classes suggests that the model
can effectively assist healthcare professionals in making informed decisions regarding
patient care and interventions, ultimately contributing to improved outcomes in
cardiovascular health.
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Precision-Recall Curves for Each Class
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Figure 40. Precision-recall curves for each class

The average precision scores of 0.90, 0.93, and 0.97 for the precision-recall curves
indicate a compelling trend in the model's performance across the three classes of plaque
progression prediction. These scores reflect the model's capacity to effectively distinguish
between true positive instances and false positives, showcasing an increase in precision
as the severity of plaque progression escalates. In clinical terms, high precision is critical,
as it suggests that when the model predicts a positive outcome, it is highly likely to be
correct. A precision of 0.90 indicates that 90% of the identified positive cases in the first
class are true positives, while 0.97 in the most advanced class suggests an excellent ability
to identify those at greatest risk with minimal misclassification. This improvement
highlights the model's potential utility in risk stratification, enabling healthcare providers
to focus interventions on those who are more likely to benefit from them. Moreover, the
increasing precision suggests that the model not only identifies patients effectively but
also provides confidence in its predictions. This characteristic is essential in a clinical
setting, where false positives can lead to unnecessary stress and interventions for
patients. As the model approaches a precision score of 1.0, it indicates an exemplary
performance, which could significantly enhance decision-making processes in managing
plaque progression and related cardiovascular risks. Ultimately, these precision-recall
scores underscore the potential of the predictive model in a healthcare context,
advocating for its application in clinical practices for improved outcomes in patients at
risk of significant cardiovascular events associated with plaque progression.

4.4.2. Comparison to state of the art

Han et al. (2020) (Han et al, 2020) integrated coronary computed tomography
angiography-determined qualitative and quantitative plaque features within a machine
learning (ML) framework to determine its performance for predicting rapid coronary
plaque progression (RPP). They have used CTA data from 1083 patients and tested
several machine learning algorithms to achieve an AUC of 0.618 for the model where only
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clinical and laboratory variables were used and 0.833 when clinical and laboratory
variables were combined with qualitative and quantitative CT variables. A significant
aspect of their methodology was the proactive approach to address feature importance
within their dataset. Predictive classifiers for prediction of RPP were developed using an
ensemble classification approach (“boosting”) where a set of weak base classifiers can be
combined to create a single strong classifier by iteratively adjusting their appropriate
weighting according to misclassifications.

Rosandeel et al. (2018) (van Rosendael et al., 2018) aimed to investigate whether a ML
score, incorporating only the 16 segment coronary tree information derived from
coronary computed tomography angiography (CCTA), provides enhanced risk
stratification compared with current CCTA based risk scores. In a study that involved
8844 patients with no known history of CAD and employed a methodology where a total
35 CCTA variables (stenosis severity and plaque composition considering the 16 coronary
segments, 2 variables for posterolateral branch when dominance was unknown and
coronary artery dominance) were incorporated in the machine learning score. A machine
learning algorithm based on XGBoost achieved an AUC of 0.84.

In a previous study (Spahi¢ et al, 2023) we have conducted using data mining and
artificial neural networks to predict coronary plaque progression the aim was to
determine the risk and pace of progression of CATS, based on lipid-species, anti-
thrombotic drugs, clinical data, risk factors and general biomarkers. The methodology
relied on feature selection using ReliefF, MRMR & wrapper techniques followed by a
simple architecture of ANN. The overall achieved accuracy of 0.81 was satisfactory,
however the classification power of the developed system was significantly hindered by
low specificity indicating that the ANN does not generalize well for the insignificant
plaque progression samples. This problem persisted across all iterations of the ANN
considering significant class imbalance of the dataset where only 22% of the data
corresponded to the minority class.

Corti et al,, (2023) have developed a surrogate model to be coupled with FEM as a
substitute for the previously employed agent based model to reduce the computational
cost by preserving the modeling accuracy. The surrogate models were (i) used to explore
the relation between the ABM parameters and the global outputs, and (ii) employed in the
calibration process, in which the selected ABM parameters were calibrated through
genetic algorithm optimization. The developed surrogate model achieved an R? in the
range from 0.985-0.995 indicating high fidelity and potential to substitute the
computationally-intensive ABM.
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Table 25. State of the art benchmarking

Aspect Rosandeel et Han et al. Spahic et al. Cortietal. | Model in this
al. (2018) (2020) (2023) (2023) study
Simple ANN Surrogate
\I;vith model based Advanced
Ensemble on ANN with
XGBoost employed
models hvsiological ABM
regularizatio | PRystologica
Model n data parameters
Structure N
Moderate | Employingan Captures Limited in Captures
complexit iterative complex complex complex
loss § namyi’c LogitBoost feature ~ feature feature
y algorithm interactions | Mteractions | jnteractions
Feature
CT images clinical and selection Physiological Includes
and CCTA laboratory using ReliefF, | and imaging | simulation-
SCores variables & MRMR & data based ABM
CT variables wrapper parameters
Feature technigues
Engineering ADASYN
Feature information- SMOTE Focuses on class
importance gain algorithmto | physijological | imbalance
score attribute address class modeling mitigation
assessment ranking imbalance and feature
weighing
Accuracy: Accuracy:
81.81%, , 95.4%,
Performance AUC AUC Sensitivity: R Sensitivity:
Metrics 0.84 0.618 - 0.833 96%, 0.985-0.995 95.2%,
Specificity: Specificity:
37.5% 97.6% .
Scalable _
Moderate Moderate architecture Requires Low
resource resource with lower significant resource
requirements | requirements resource Fesources | requirement
Computational demands
Efficiency Resource-
Feasible for intensive Suitable for May limit Feasible for
many settines | Pecuase of clinical practical many
y & image applications | applicability settings
processing
4.5. Integration into DECODE cloud platform

Through the seamless integration of ABM and Al into the DECODE cloud platform via an
AP], the system will be able to harness the best of both worlds: the detailed simulation of
biological processes and the predictive power of Al. To achieve this integration, a robust
API framework will be developed, allowing the DECODE platform to interface with both
the ABM and Al systems. The API will serve as a bridge, handling the flow of data between
the cloud-based platform, the simulation models, and healthcare providers. By employing
adaptable architectures, the system ensures scalability, reliability.
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The ABM module simulates the behavior of individual agents (such as cells, proteins, or
plaques) within the arterial environment, capturing the dynamic interactions that
contribute to disease progression, particularly in conditions like atherosclerosis. The
integration of ABM into DECODE will involve deploying the model on the cloud. This
allows for the detailed and resource-intensive simulations required for accurate modeling
of biological processes. Once the ABM is integrated, the API will facilitate the following
workflow:

e Input of patient-specific data: Clinical data, such as imaging results, biochemical
markers, and patient demographics, will be submitted through the API. This data
will be pre-processed by the DECODE platform and then sent to the ABM module
for simulation.

e Execution of ABM simulations: The API will initiate the simulation of disease
progression within the ABM, simulating how individual agents behave and interact
in the vascular system. The model will run in parallel, allowing multiple
simulations to take place concurrently.

e Return of simulation results: The API will return the results of these simulations
to the DECODE platform, where the data can be analyzed, visualized, and compared
with patient data to enhance diagnosis or treatment planning. This could include
insights into plaque progression, risk of rupture, and treatment outcomes.

The integration of Al models adds an essential layer of predictive power and machine
learning to the DECODE platform. By leveraging Al algorithms, the system can process
large datasets, identify complex patterns, and generate patient-specific predictions that
evolve over time. Al is trained on multimodal datasets, combining clinical data, genetic
information, and imaging results to predict plaque progression, intervention success, and
disease outcomes. The integration of Al follows a similar workflow facilitated by the API:

e Data input and preprocessing: The DECODE platform will use the API to feed the
Al models with the same patient-specific data utilized by the ABM, including any
new data collected over time.

e Al-driven predictions: The Al module, powered by advanced machine learning
algorithms, will analyze the data to predict atherosclerotic plaque behavior and
assess the risk of peripheral artery disease progression. The API ensures that the
Al model can continuously update predictions as new patient data becomes
available, making the platform adaptive and real-time.

e Feedback to DECODE platform: The API will facilitate the return of Al-driven
insights, which can then be displayed to clinicians via the DECODE interface,
supporting decision-making with precise, data-driven guidance.

The combined integration of ABM and Al allows for a powerful synergy within the
DECODE platform. While ABM provides mechanistic insights into the behavior of
biological agents, Al enhances the system by learning from vast amounts of data, offering
predictions that can be continuously refined. The API will act as the central conduit,
enabling the smooth exchange of data between these two models. For example, the results
from ABM simulations can serve as input features for the Al model, further refining
predictions and offering a holistic understanding of patient-specific disease progression.
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5.Conclusion

In this research, the transformative potential of artificial intelligence and agent-based
modeling in understanding and managing cardiovascular diseases, particularly
atherosclerosis, was investigated. Agent-based modeling has provided a robust
framework for simulating complex biological interactions and understanding the
multifaceted nature of cardiovascular disease development. By modeling the behaviors of
individual agents, such as cells and tissues, ABM has elucidated critical mechanisms
underlying plaque formation and progression, revealing insights that could inform
targeted therapeutic strategies. The findings demonstrate that Al, through advanced
machine learning and deep learning techniques, significantly enhances the early detection
of atherosclerosis and improves risk stratification by analyzing large and diverse datasets
from electronic health records, medical imaging, and genetic profiles. The integration of
Al has shown the capacity to identify patterns and predict disease progression with a level
of accuracy that can surpass traditional methods, thereby offering new avenues for
personalized patient care.

However, this research also highlighted the inherent limitations associated with both
methodologies. Issues related to data quality, model interpretability, and the complexity
of biological systems underscore the need for ongoing refinement and validation of these
models. Overcoming these challenges is essential for ensuring the reliability and
applicability of ABM and Al in clinical settings.

ABM serves as a powerful tool for simulating the intricate interactions among various
biological agents, such as cells and tissues, within the cardiovascular system. By
representing each agent with unique behaviors and interactions, ABM can illuminate how
individual cellular activities contribute to the development and progression of
cardiovascular diseases. As shown in this research, ABM has successfully simulated
plaque progression and the utilized methodology was confirmed as congruent with
patient data. However, in cases where extreme variations of simulation parameters were
introduced, the ABM failed in accurately capturing the plaque progression pattern, and
provided results that are unexpected in real-world scenarios. This is due to the fact that
the complexity of biological systems poses significant challenges. The intricate interplay
of multiple factors, including genetic, environmental, and lifestyle influences, makes it
difficult to capture the full spectrum of interactions in a comprehensive model. ABM
requires extensive data for parameterization and validation, often necessitating high-
quality biological and clinical datasets. These data may not always be readily accessible,
and any inconsistencies or biases in the dataset can lead to misleading conclusions. The
calibration of ABM is another crucial step, as it requires meticulous attention to detail to
ensure that the model accurately reflects biological realities. This process can be time-
consuming and resource-intensive, often requiring advanced expertise and
computational power. In addition, ABM outcomes can be sensitive to variations in
parameters. Small changes in how agents interact can lead to significant differences in
model predictions, making it essential for researchers to conduct thorough sensitivity
analyses. However, identifying the most impactful parameters can be a complex task,
often requiring extensive experimentation and iteration.

On the other hand, Al modeling—especially machine learning and deep learning
techniques—has revolutionized the analysis of large datasets in cardiovascular medicine.
These algorithms excel at identifying patterns within electronic health records, medical
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imaging, and genetic profiles, potentially leading to early detection and improved risk
stratification for patients. Yet, the reliance on data quality is a double-edged sword. If the
input data is incomplete, noisy, or biased, the Al model's predictions may be flawed,
potentially leading to detrimental clinical outcomes. The dynamic nature of
cardiovascular diseases adds another layer of complexity. As patients undergo treatment
and lifestyle changes, their cardiovascular status evolves. Al models may struggle to keep
pace with these changes, leading to outdated or irrelevant predictions that fail to address
the patient's current health status. Surrogate modeling opens an avenue for creating Al-
based models by using virtual populations generated by running simulations such as
ABM. The surrogate model for atherosclerotic plaque progression developed in this
research was based on artificial neural networks and deep learning. The model was
developed on the basis of a comprehensive dataset created for the purpose of the
development of the surrogate model. The dataset captured a landscape of patient-specific
variability and provided significant variation for the model to learn. The model performed
with 95.4% accuracy and congruency with the ABM indicating its strong potential to be
used in practice.

While both ABM and Al modeling present unique opportunities to advance cardiovascular
medicine, their limitations must be thoughtfully addressed. By continuing to advance
these innovative approaches, we can significantly enhance our understanding of
cardiovascular diseases, leading to more precise risk assessments, personalized
treatment plans, and improved patient outcomes. Creating interpretable Al and ABM
models is vital for fostering trust among healthcare providers and patients. Stakeholders
must prioritize transparency in model design, enabling clinicians to understand how
predictions are made and empowering them to explain these insights to patients. This
interpretability is essential for gaining acceptance in clinical settings, where decisions are
often based on a combination of evidence, experience, and patient preferences.
Additionally, ethical considerations must be at the forefront of research and
implementation, ensuring that Al and ABM applications do not perpetuate biases or
inequities in healthcare. To translate research findings into tangible benefits for patients,
ongoing validation studies are necessary. These studies should involve diverse patient
populations to ensure that models are generalizable and effective across different
demographics. Real-world clinical trials can provide valuable feedback on the usability
and efficacy of Al and ABM systems, paving the way for their adoption in everyday clinical
practice.
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