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Abstract	
Cardiovascular	diseases,	particularly	atherosclerosis,	remain	leading	causes	of	morbidity	
and	mortality	worldwide,	necessitating	 innovative	approaches	 for	early	detection,	 risk	
stratification,	 and	 management.	 This	 research	 explores	 the	 application	 of	 advanced	
computational	 techniques—artificial	 intelligence	 (AI)	 and	 agent-based	 modeling	
(ABM)—to	 address	 the	 complexities	 of	 atherosclerosis	 progression.	 AI,	 leveraging	
machine	learning	and	deep	learning	algorithms,	has	demonstrated	significant	potential	in	
analyzing	large-scale	datasets,	including	electronic	health	records,	medical	imaging,	and	
genetic	 profiles,	 to	 predict	 disease	 onset	 and	 progression	 with	 greater	 accuracy	 than	
traditional	 methods.	 Concurrently,	 ABM	 offers	 insights	 into	 the	 intricate	 biological	
interactions	within	the	cardiovascular	system	by	simulating	the	behaviors	of	individual	
agents,	 such	 as	 cells	 and	 tissues,	 in	 response	 to	 various	 stimuli.	 However,	 both	
methodologies	 present	 limitations,	 including	 challenges	 related	 to	 data	 quality,	model	
interpretability,	and	the	complexity	of	biological	systems.	

This	 research	 underscores	 the	 need	 for	 interdisciplinary	 collaboration	 between	
computational	scientists,	clinicians,	and	engineers	 to	refine	 these	models	and	 facilitate	
their	 integration	 into	 clinical	 practice.	 Sensitivity	 analysis	 was	 conducted	 on	 the	
developed	ABM	model	and	a	virtual	population	was	created	 from	 the	data	 in	order	 to	
develop	as	 surrogate	model	based	on	AI.	The	dataset	 captured	a	 landscape	of	patient-
specific	 variability	 and	 provided	 significant	 variation	 for	 the	 model	 to	 learn.	 	 The	
surrogate	model	 for	 atherosclerotic	 plaque	 progression	was	 based	 on	 artificial	 neural	
networks	and	deep	learning	and	performed	with	95.4%	accuracy	and	congruency	with	
the	ABM	indicating	its	strong	potential	to	be	used	in	practice.	

By	addressing	their	inherent	limitations,	AI	and	ABM	hold	the	potential	to	revolutionize	
cardiovascular	medicine,	leading	to	more	personalized	and	effective	treatments.	Future	
research	directions	include	improving	data	integration,	enhancing	model	transparency,	
and	 conducting	 real-world	 validation	 studies	 to	 translate	 computational	 insights	 into	
meaningful	clinical	outcomes.	The	findings	of	this	study	contribute	to	the	growing	body	
of	 evidence	 supporting	 the	 role	 of	 ABM	 andAI	 surrogate	 modeling	 in	 advancing	 our	
understanding	of	cardiovascular	diseases.	The	potential	of	ABM	modeling	backed	with	
decreasing	 of	 computational	 resources	 necessary	 and	 enhanced	 speed	 of	 decission	
making	ensured	by	surrogate	modeling	offers	promising	pathways	for	better	patient	care	
and	disease	management.		

	

Keywords:	 atherosclerosis,	 plaque	 progression,	 multiscale	 modeling,	 agent-based	
modeling,	artificial	intelligence	

	 	



 
 

Sažetak	istraživanja	
Кардиоваскуларне	 болести,	 нарочито	 атеросклероза,	 и	 даље	 су	 водећи	 узроци	
морбидитета	 и	 морталитета	 широм	 света,	 што	 захтева	 иновативне	 приступе	 за	
рано	 откривање,	 стратификацију	 ризика	 и	 управљање	 болестима.	 Ово	
истраживање	 истражује	 примену	 напредних	 рачунарских	 техника—вештачке	
интелигенције	 (AI)	 и	 моделирања	 заснованог	 на	 агентима	 (ABM)—у	 решавању	
комплексности	 прогресије	 атеросклерозе.	 Вештачка	 интелигенција,	 користећи	
алгоритме	машинског	и	дубоког	учења,	показала	је	значајан	потенцијал	у	анализи	
великих	 скупова	 података,	 укључујући	 електронске	 здравствене	 записе,	
медицинске	 слике	 и	 генетске	 профиле,	 за	 прецизније	 предвиђање	 појаве	 и	
прогресије	 болести	од	 традиционалних	метода.	Истовремено,	ABM	пружа	 увид	 у	
сложене	биолошке	интеракције	унутар	кардиоваскуларног	система	симулирајући	
понашање	појединачних	агената,	попут	ћелија	и	ткива,	као	одговор	на	различите	
стимулусе.	 Међутим,	 обе	 методологије	 имају	 ограничења,	 укључујући	 изазове	
везане	за	квалитет	података,	интерпретабилност	модела	и	сложеност	биолошких	
система.			

Ово	 истраживање	 истиче	 потребу	 за	 интердисциплинарном	 сарадњом	 између	
рачунарских	 научника,	 клиничара	 и	 инжењера	 ради	 унапређења	 ових	 модела	 и	
њихове	 интеграције	 у	 клиничку	 праксу.	 Спроведена	 је	 анализа	 осетљивости	 на	
развијеном	 ABM	 моделу,	 а	 из	 података	 је	 креирана	 виртуелна	 популација	 ради	
развоја	сурогат	модела	заснованог	на	вештачкој	интелигенцији.	Скуп	података	је	
обухватио	спектар	варијабилности	специфичне	за	пацијенте	и	обезбедио	значајну	
варијацију	 за	 учење	 модела.	 Сурогат	 модел	 за	 прогресију	 атеросклеротичних	
плакова	 заснован	 је	 на	 вештачким	 неуронским	 мрежама	 и	 дубоком	 учењу	 и	
постигао	је	тачност	од	95.4%	и	усклађеност	са	ABM,	што	указује	на	његов	велики	
потенцијал	за	практичну	примену.			

Уз	 превазилажење	 урођених	 ограничења,	 AI	 и	 ABM	 имају	 потенцијал	 да	
револуционишу	 кардиоваскуларну	 медицину,	 водећи	 ка	 персонализованијим	 и	
ефикаснијим	 третманима.	 Будући	 правци	 истраживања	 укључују	 унапређење	
интеграције	података,	побољшање	транспарентности	модела	и	спровођење	студија	
валидизације	 у	 стварном	 свету	 ради	 претварања	 рачунарских	 увида	 у	 значајне	
клиничке	 резултате.	 Налази	 овог	 истраживања	 доприносе	 растућој	 бази	 доказа	
који	 подржавају	 улогу	 ABM	 и	 AI	 сурогат	 моделирања	 у	 унапређењу	 нашег	
разумевања	 кардиоваскуларних	 болести.	Потенцијал	ABM	моделирања,	 подржан	
смањењем	 потребних	 рачунарских	 ресурса	 и	 убрзањем	 доношења	 одлука	
захваљујући	сурогат	моделирању,	нуди	обећавајуће	путеве	за	бољу	негу	пацијената	
и	управљање	болестима.			

Кључне	 речи:	 атеросклероза,	 прогресија	 плака,	 вишескално	 моделирање,	
моделирање	засновано	на	агентима,	вештачка	интелигенција	
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1. Introduction	
Atherosclerosis	is	a	chronic,	progressive	disease	characterized	by	the	buildup	of	plaques	
within	the	arterial	walls,	leading	to	reduced	blood	flow	and	increasing	the	risk	of	severe	
cardiovascular	 events	 such	as	heart	 attack,	 stroke,	 and	peripheral	 artery	disease.	As	 a	
leading	cause	of	morbidity	and	mortality	worldwide,	atherosclerosis	is	responsible	for	a	
significant	proportion	of	deaths	related	to	cardiovascular	disease	(CVD),	which	remains	
the	 leading	 global	 cause	 of	 death.	 Despite	 advances	 in	 prevention,	 diagnosis,	 and	
treatment,	the	burden	of	atherosclerosis	continues	to	rise,	driven	by	factors	such	as	aging	
populations,	 sedentary	 lifestyles,	 and	 an	 increase	 in	 metabolic	 disorders,	 including	
obesity,	diabetes,	and	hypertension.	

The	pathophysiology	of	atherosclerosis	is	complex,	involving	a	combination	of	endothelial	
dysfunction,	 lipid	accumulation,	 inflammatory	processes,	and	cellular	responses	within	
the	arterial	wall.	These	interactions	result	in	the	formation	and	growth	of	atheromatous	
plaques,	which	 can	become	unstable,	 leading	 to	plaque	 rupture	 and	 thrombosis.	 Early	
detection	and	accurate	risk	stratification	are	critical	for	preventing	the	progression	of	the	
disease	and	reducing	the	likelihood	of	life-threatening	complications.	

However,	 conventional	 diagnostic	 methods,	 such	 as	 clinical	 risk	 scores	 and	 medical	
imaging	techniques,	often	fall	short	in	identifying	subtle	or	early-stage	disease,	making	it	
difficult	 to	 intervene	 before	 significant	 damage	 occurs.	 Additionally,	 the	multifactorial	
nature	of	atherosclerosis,	with	contributions	from	genetic,	environmental,	and	lifestyle	
factors,	presents	a	substantial	challenge	for	personalized	treatment	approaches.	In	light	
of	these	challenges,	there	is	a	growing	need	for	novel	methodologies	that	can	capture	the	
complexity	of	the	disease	and	enhance	our	ability	to	predict	its	progression.	

1.1. Subject and aim of this dissertation 
The	subject	of	 this	doctoral	dissertation	 is	 the	development	of	 an	advanced	model	 for	
predicting	 the	 progression	 of	 atherosclerotic	 plaque	 in	 peripheral	 arteries,	 utilizing	
sophisticated	 computational	 methods	 such	 as	 Artificial	 Intelligence	 (AI),	 agent-based	
modeling	(ABM),	and	finite	element	analysis	(FEA).	Atherosclerosis	in	peripheral	arteries	
is	a	major	contributor	to	peripheral	artery	disease	(PAD),	a	serious	global	health	concern	
that	 can	 lead	 to	 severe	 complications,	 including	 chronic	 pain,	 tissue	 ischemia,	 and,	 in	
advanced	cases,	gangrene	or	limb	amputation.	Moreover,	PAD	is	closely	associated	with	
systemic	atherosclerosis,	significantly	increasing	the	risk	of	major	cardiovascular	events	
such	as	heart	attacks	and	strokes.	The	ability	to	accurately	predict	plaque	progression	and	
intervene	early	is	therefore	crucial	for	improving	patient	outcomes.	

The	primary	goal	of	this	research	is	to	develop	a	predictive	application	that	models	the	
behavior	of	atherosclerotic	plaque	in	arteries.	This	tool	will	integrate	AI,	ABM,	and	FEA	to	
provide	a	powerful	platform	for	clinicians	and	researchers	to	predict	disease	progression	
and	manage	high-risk	 patients.	 The	 application	will	 be	 embedded	within	 the	DECODE	
platform,	a	comprehensive	computational	project	aimed	at	advancing	the	diagnosis	and	
treatment	 of	 cardiovascular	 diseases.	 This	 research	 focuses	 on	 creating	 a	 data-driven	
model	 that	 simulates	 the	biological,	mechanical,	 and	hemodynamic	 factors	 influencing	
plaque	progression,	thereby	enhancing	our	ability	to	predict	its	trajectory	in	arteries.	

Atherosclerosis,	characterized	by	the	buildup	of	lipid-rich	plaques	within	arterial	walls,	
restricts	 blood	 flow	 and	 poses	 a	 significant	 risk	 for	 cardiovascular	 complications.	
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Peripheral	artery	disease	affects	the	arteries	of	the	legs	and	arms,	leading	to	conditions	
such	 as	 claudication,	 where	 muscle	 pain	 is	 caused	 by	 insufficient	 blood	 flow	 during	
exercise,	and	in	severe	cases,	critical	limb	ischemia	and	the	potential	for	limb	amputation.	
Despite	 the	 availability	 of	 diagnostic	 tools	 such	 as	 ultrasound,	 CT	 angiography,	 and	
magnetic	resonance	imaging	(MRI),	current	clinical	methods	fall	short	in	predicting	how	
plaques	will	evolve	over	time.	This	gap	underscores	the	need	for	advanced	models	that	
leverage	cutting-edge	technologies	to	improve	predictions.	

In	combination	with	ABM,	which	provides	detailed	simulations	of	cellular	and	molecular	
interactions	during	plaque	formation,	AI	adds	a	layer	of	predictive	power	by	learning	from	
vast	datasets	and	making	high-accuracy	predictions	about	 future	plaque	behavior.	The	
integration	of	AI	into	this	modeling	framework	is	crucial	because	it	allows	for	real-time	
analysis	 and	 prediction	 based	 on	 continuously	 updated	 patient	 data,	 enabling	
personalized	 treatment	 strategies.	AI	will	 not	 only	 assist	 in	 risk	 stratification	but	 also	
guide	 therapeutic	 decisions,	 potentially	 identifying	 the	 optimal	 intervention	 points	 to	
prevent	adverse	outcomes	such	as	plaque	rupture	or	total	arterial	occlusion.	

ABM	offers	a	complementary	approach	by	simulating	the	complex	biological	processes	at	
play	in	atherosclerosis,	such	as	the	interactions	between	endothelial	cells,	smooth	muscle	
cells,	and	inflammatory	cells	in	the	arterial	walls.	By	creating	a	virtual	environment	where	
these	 "agents"	 interact	 over	 time,	 ABM	 allows	 researchers	 to	 model	 the	 dynamic	
progression	 of	 plaques	 in	 response	 to	 both	 biological	 stimuli	 (e.g.,	 inflammation,	 lipid	
deposition)	 and	mechanical	 forces	 (e.g.,	 blood	 flow-induced	 shear	 stress).	 This	 agent-
based	approach	is	particularly	valuable	for	exploring	"what-if"	scenarios,	where	different	
intervention	strategies	can	be	tested	to	determine	their	effect	on	plaque	progression.	

This	interdisciplinary	approach	not	only	enhances	the	precision	of	predictions	but	also	
provides	a	personalized	aspect	to	the	treatment	of	atherosclerosis.	For	instance,	AI	can	
continuously	learn	from	new	patient	data,	improving	its	predictions	over	time,	while	ABM	
and	 FEA	 simulate	 the	 biological	 and	 mechanical	 factors	 at	 play.	 Such	 a	 tool	 has	 the	
potential	to	significantly	improve	clinical	decision-making	by	offering	tailored	predictions	
of	plaque	growth	and	rupture	risk,	leading	to	earlier	and	more	effective	treatments.	

1.2. Starting hypotheses 
The	main	hypotheses	 of	 the	doctoral	 dissertation,	 derived	 from	 the	 research	 goal,	 the	
candidate's	previous	research	activities,	and	the	results	of	other	authors	 in	the	field	of	
research,	consist	of	the	following	assumptions:	

• It	 is	 possible	 to	 create	 artificial	 intelligence	 networks	 for	 predicting	 the	
behavior	of	relevant	parameters	for	plaque	progression.	

• It	 is	 possible	 to	 create	 an	ABM	 (agent-based	modeling)	model	 for	modeling	
plaque	 progression	 and	 the	 interaction	 of	 drugs	 delivered	 directly	 into	 the	
artery.	

• It	 is	 possible	 to	 create	 an	 application	 for	 displaying	 a	 3D	 model	 of	 the	
peripheral	artery	and	the	plaque	within	it.	

• It	 is	 possible	 to	 create	 a	module	 as	 a	 part	 of	DECODE	platform	API	 for	 real	
deformations	within	the	ABM,	thereby	achieving	realistic	behavior	of	the	artery	
and	atherosclerotic	plaque	as	deformable	bodies.	
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1.3. Thesis	structure	

In	Chapter	1,	 the	 subject	 and	objectives	 of	 the	dissertation	 are	defined,	 including	 the	
initial	hypotheses	and	the	contributions	of	the	dissertation.	

Chapter	2	explains	the	anatomy	of	the	cardiovascular	system,	covering	blood	vessels	and	
the	structure	of	arteries,	with	a	particular	focus	on	peripheral	arteries.	It	also	discusses	
the	 function	 and	 mechanics	 of	 blood	 flow	 through	 the	 cardiovascular	 system.	
Atherosclerosis	is	introduced	as	a	significant	health	concern.	The	causes,	progression,	and	
complications	 of	 atherosclerosis	 are	 discussed,	 highlighting	 the	 importance	 of	
understanding	its	impact	on	cardiovascular	health.	

Chapter	3	delves	into	artery	biomechanics,	explaining	the	mechanical	 forces	acting	on	
arterial	walls	and	their	role	in	the	development	and	progression	of	atherosclerosis.	The	
interaction	 between	 arterial	 structure	 and	 plaque	 formation	 is	 emphasized.	
Subsequently,	the	diagnostic	methods	for	atherosclerosis,	including	imaging	techniques	
such	as	ultrasound,	angiography,	and	magnetic	resonance	imaging,	are	explored.	The	role	
of	these	technologies	in	early	detection	and	ongoing	monitoring	of	plaque	progression	is	
discussed	 as	well	 as	 current	 treatment	methods	 for	 atherosclerosis,	 both	 surgical	 and	
pharmacological,	are	reviewed.	The	effectiveness	of	different	interventions	is	evaluated,	
with	 an	 emphasis	 on	 the	 need	 for	 improved	 treatment	 approaches.	 Bioengineering	
applications	in	cardiovascular	medicine,	highlighting	the	role	of	computational	models	in	
understanding	atherosclerosis	are	presented	next.	The	chapter	discusses	the	use	of	Finite	
Element	Analysis	 (FEA)	 in	predicting	plaque	behavior	and	disease	progression.	Agent-
Based	Modeling	(ABM)	is	introduced	as	a	novel	method	for	simulating	the	progression	of	
atherosclerosis.	The	state-of-the-art	 in	ABM	applications	 for	cardiovascular	diseases	 is	
reviewed,	 with	 a	 focus	 on	 its	 potential	 to	 improve	 patient	 outcomes.	 Subsequently,	
applications	of	Artificial	Intelligence	(AI)	in	cardiovascular	medicine,	explaining	how	AI-
based	decision	support	systems	are	transforming	diagnosis	and	treatment.	The	role	of	AI	
in	analyzing	complex	datasets	and	improving	clinical	decision-making	is	explored.	

Chapter	 4	 presents	 experimental	 research	 on	 atherosclerotic	 plaque	 progression,	
describing	the	integration	of	ABM	and	FEA	models.	This	chapter	explains	the	coupling	of	
computational	 fluid	 dynamics	 with	 ABM	 for	 a	more	 comprehensive	 understanding	 of	
plaque	dynamics.	 Sensitivity	 analysis	 of	ABM	parameters	 is	 conducted	 to	 evaluate	 the	
robustness	and	reliability	of	the	model	in	predicting	plaque	progression	under	different	
conditions.	Finally	a	surrogate	model	is	developed	to	streamline	computational	analysis,	
reducing	 the	 time	 and	 resources	 needed	 for	 predicting	 plaque	 progression	 while	
maintaining	accuracy.	The	process	of	dataset	curation	is	detailed,	outlining	the	methods	
used	 to	 collect,	 retrieve,	 and	 preprocess	 data	 for	 model	 training	 and	 validation,	
development	and	implementation	of	the	Artificial	Neural	Network	(ANN)	model,	designed	
to	predict	plaque	progression	based	on	patient-specific	data	detailed	and	performance	of	
the	ANN	model	evaluated.	A	comparative	analysis	of	the	developed	models	with	existing	
research	 in	 the	 field,	 assessing	 the	 improvements	 and	 contributions	 of	 this	 work	 to	
cardiovascular	 medicine	 is	 presented.	 Finally,	 the	 integration	 into	 DECODE	 cloud	
platform	via	an	API	is	explained.		

Chapter	 7	 presents	 the	 conclusions	 of	 the	 dissertation,	 summarizing	 the	 research	
findings,	contributions	to	science	and	medicine,	and	directions	for	future	research.	
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The	final	chapter	contains	the	list	of	references.	

The	final	chapter	is	followed	by	the	candidate’s	biography	and	mandatory	statements.	  
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2. Cardiovascular system	
The	 cardiovascular	 system,	 composed	of	 the	heart	 and	 an	 extensive	network	of	 blood	
vessels,	 functions	 as	 the	 body's	 primary	 transport	mechanism,	 delivering	 oxygen	 and	
essential	nutrients	to	tissues	and	removing	metabolic	waste	products	(Figure 1. Human 
cardiovascular systemFigure	 1)	 (Bădilă	 et	 al.,	 2017).	 This	 system	 is	 fundamental	 to	
maintaining	homeostasis	and	ensuring	 the	proper	 functioning	of	organs	and	 tissues.	A	
comprehensive	understanding	of	the	physiology	and	biomechanics	of	the	cardiovascular	
system	 is	 crucial	 for	 elucidating	 the	 mechanisms	 underlying	 cardiovascular	 diseases,	
particularly	thrombosis	and	atherosclerosis.	These	conditions	are	major	contributors	to	
morbidity	and	mortality	worldwide,	necessitating	detailed	investigation	and	innovative	
therapeutic	approaches	(Cameron	et	al.,	2020).	

	
Figure	1.	Human	cardiovascular	system	(Online	resource	1)	

The	 heart	 serves	 as	 the	 „pump“	 of	 the	 cardiovascular	 system	 and	 is	 divided	 into	 four	
chambers:	two	atria	and	two	ventricles.	These	chambers	are	separated	by	septa,	with	the	
interatrial	 septum	 dividing	 the	 atria	 and	 the	 interventricular	 septum	 separating	 the	
ventricles.	 The	 chambers	 work	 in	 a	 highly	 coordinated	 manner	 to	 ensure	 the	
unidirectional	flow	of	blood	(Figure	2).	
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Figure	2.	Heart	physiology	(Online	resource	2)	

The	right	atrium	is	the	upper	right	chamber	that	receives	deoxygenated	blood	from	the	
body	 through	 two	 large	 veins:	 the	 superior	 vena	 cava	 and	 the	 inferior	 vena	 cava.	The	
superior	vena	cava	drains	blood	from	the	upper	part	of	the	body,	including	the	head	and	
arms,	while	the	inferior	vena	cava	carries	blood	from	the	lower	regions.	The	right	atrium	
also	receives	blood	from	the	coronary	sinus,	which	drains	deoxygenated	blood	from	the	
heart's	own	circulation	(Hall	and	Hall,	2020).	Blood	then	flows	from	the	right	atrium	into	
the	 right	 ventricle	 through	 the	 tricuspid	 valve,	 which	 prevents	 backflow	 during	
ventricular	contraction.	The	right	ventricle,	with	 its	 relatively	 thin	walls,	pumps	blood	
into	 the	 pulmonary	 circulation	 through	 the	 pulmonary	 valve	 and	 into	 the	 pulmonary	
artery.	 This	 artery	 branches	 into	 left	 and	 right	 pulmonary	 arteries	 that	 carry	
deoxygenated	blood	 to	 the	 lungs	 for	gas	exchange.	 In	 the	 lungs,	blood	 travels	 through	
capillaries	surrounding	the	alveoli	where	carbon	dioxide	is	exchanged	for	oxygen.	This	
oxygen-rich	blood	then	returns	to	the	heart	via	four	pulmonary	veins,	entering	the	left	
atrium.	Unlike	other	veins	in	the	body,	pulmonary	veins	carry	oxygenated	blood.	The	left	
atrium	 receives	oxygenated	blood	 from	 the	 lungs.	This	blood	 then	passes	 through	 the	
mitral	valve,	which	prevents	backflow,	into	the	left	ventricle.	The	mitral	valve,	also	known	
as	the	bicuspid	valve,	has	two	cusps	and	is	structurally	more	robust	than	the	tricuspid	
valve	due	to	the	higher	pressures	in	the	left	side	of	the	heart.	The	left	ventricle,	with	its	
thick	 muscular	 walls,	 is	 the	 most	 powerful	 chamber	 of	 the	 heart.	 It	 must	 generate	
sufficient	force	to	propel	blood	through	the	systemic	circulation.	Blood	is	ejected	from	the	
left	ventricle	into	the	aorta	through	the	aortic	valve.	The	aorta	is	the	largest	artery	in	the	
body	and	distributes	oxygenated	blood	to	all	parts	of	the	body	via	the	systemic	circulation.	
The	 heart	 valves	 ensure	 unidirectional	 blood	 flow	 and	 prevent	 backflow	 during	 the	
cardiac	cycle.	The	tricuspid	and	mitral	valves,	located	between	the	atria	and	ventricles,	
are	known	as	atrioventricular	valves.	The	pulmonary	and	aortic	valves,	located	at	the	exits	
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of	the	right	and	left	ventricles	respectively,	are	known	as	semilunar	valves.	These	valves	
open	 and	 close	 in	 response	 to	 pressure	 changes	during	 the	 cardiac	 cycle,	maintaining	
efficient	circulation.	
The	cardiac	cycle	comprises	two	main	phases:	diastole	and	systole.	During	diastole,	the	
heart	muscle	relaxes,	and	the	chambers	 fill	with	blood.	The	atrioventricular	valves	are	
open,	allowing	blood	 to	 flow	 from	the	atria	 to	 the	ventricles.	During	systole,	 the	heart	
muscle	contracts,	the	atrioventricular	valves	close	to	prevent	backflow,	and	the	semilunar	
valves	open	to	allow	blood	to	be	ejected	into	the	pulmonary	artery	and	aorta.	The	heart's	
ability	to	contract	rhythmically	is	regulated	by	its	intrinsic	electrical	conduction	system.	
The	 sinoatrial	 (SA)	 node,	 located	 in	 the	 right	 atrium,	 acts	 as	 the	 natural	 pacemaker,	
generating	electrical	impulses	that	spread	through	the	atria,	causing	them	to	contract.	The	
impulses	 then	 reach	 the	 atrioventricular	 (AV)	 node,	 which	 delays	 the	 signal	 before	
transmitting	 it	 to	 the	 ventricles	 via	 the	 bundle	 of	 His	 and	 Purkinje	 fibers.	 This	 delay	
ensures	that	the	atria	have	time	to	fully	contract	and	empty	their	blood	into	the	ventricles	
before	ventricular	contraction	begins	(Hall	and	Hall,	2020).	
	

2.1. Blood vessels 
The	blood	vessels	are	classified	into	three	primary	types:	arteries,	veins,	and	capillaries	
(Figure	3).	Arteries	carry	the	blood	away	from	the	heart	and	are	characterized	by	thick,	
elastic	walls	that	can	withstand	high	pressure.	Veins	return	blood	to	the	heart	and	have	
thinner	walls	 and	valves	 that	prevent	backflow,	 facilitating	 the	 low-pressure	 return	of	
blood.	Capillaries	 are	microscopic	 vessels	where	 the	 exchange	of	 gases,	 nutrients,	 and	
waste	products	occurs	between	the	blood	and	tissues	(Silverthorn,	2020).	
	

	
Figure	3.	Artery,	vein	and	capilary	structure(Jouda	et	al.,	2022)	

Arteries	are	blood	vessels	that	carry	blood	away	from	the	heart.	They	are	characterized	
by	their	thick,	elastic	walls,	which	are	designed	to	withstand	and	accommodate	the	high	
pressure	generated	by	the	heart's	pumping	action.	The	walls	of	arteries	consist	of	three	
layers:	the	tunica	intima,	tunica	media,	and	tunica	adventitia.	
	
Tunica	intima	is	the	innermost	layer	is	composed	of	a	single	layer	of	endothelial	cells	that	
provides	 a	 smooth	 surface	 for	 blood	 flow	 and	 is	 crucial	 for	 vascular	 homeostasis.	 It	
consists	of	 the	epithelium,	 the	 innermost	 layer	composed	of	a	 single	 layer	of	 flattened	
endothelial	cells	that	form	a	smooth	lining	that	reduces	friction	as	blood	flows	through	
the	vessel	followed	by	a	subendothelial	layer	that	consists	of	loose	connective	tissue	that	
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provides	structural	support	and	the	internal	elastic	lamina,	a	well-defined	layer	of	elastic	
fibers	that	provides	flexibility	and	allows	the	vessel	to	stretch	and	recoil.	
	
Tunica	Media	is	the	middle	layer	that	is	the	thickest	and	contains	smooth	muscle	cells	and	
elastic	 fibers.	This	 layer	 is	 responsible	 for	 the	contractility	and	elasticity	of	 the	artery,	
allowing	it	to	expand	and	recoil	with	each	heartbeat.	It	consists	of	smooth	muscle	cells	
arranged	in	concentric	layers	that	control	the	diameter	of	the	artery	through	contraction	
and	relaxation,	which	regulates	blood	pressure	and	flow.	Elastic	fibers	of	tunica	media	are	
interspersed	among	the	smooth	muscle	cells	and	provide	the	artery	with	the	ability	to	
stretch	and	recoil	with	the	pulsatile	flow	of	blood	followed	by	the	external	elastic	lamina	
present	in	larger	arteries	for	additional	elasticity.	
	
Tunica	 adventita,	 also	 known	 as	 the	 tunica	 externa	 is	 the	 outer	 layer	 composed	 of	
connective	 tissue	 that	 provides	 structural	 support	 and	 protection	 to	 the	 artery.	 Its	
outermost	layer	is	made	up	of	connective	tissue,	primarily	collagen	fibers,	which	anchor	
the	artery	to	surrounding	tissues	and	provide	structural	integrity.	Vasa	vasorum	are	small	
blood	vessels	that	supply	blood	to	the	walls	of	large	arteries	and	nervi	vasorum	are	nerves	
that	 innervate	 the	 blood	 vessel	 wall,	 particularly	 influencing	 the	 smooth	muscle	 tone	
(Silverthorn,	2020).	
	
Arteries	can	be	categorized	into	several	types	based	on	their	size,	structure,	and	function,	
each	playing	a	unique	role	in	maintaining	hemodynamic	stability.	Elastic	arteries	are	the	
largest	 arteries	 in	 the	 body,	 including	 the	 aorta	 and	 its	 major	 branches,	 such	 as	 the	
brachiocephalic,	 common	 carotid,	 and	 subclavian	 arteries.	 These	 arteries	 have	 a	
substantial	amount	of	elastic	tissue	in	their	walls,	particularly	in	the	tunica	media,	which	
allows	them	to	stretch	and	recoil	with	each	heartbeat.	This	elasticity	is	vital	for	dampening	
the	 pulsatile	 nature	 of	 blood	 flow	 generated	 by	 the	 heart	 and	 ensuring	 a	 smooth,	
continuous	flow	of	blood	throughout	the	arterial	system.	Key	functions	of	elastic	arteries	
include	acting	as	a	pressure	reservoir	by	expanding	to	accommodate	the	surge	of	blood	
while,	during	diastole,	 they	recoil,	maintaining	pressure	and	propelling	blood	 forward,	
followed	by	pressure	dampening	by	smoothing	out	the	pressure	variations	from	the	heart,	
providing	a	more	consistent	blood	flow	to	the	smaller	arteries	and	arterioles.	
	
The	 brachiocephalic,	 common	 carotid,	 and	 subclavian	 arteries	 are	 responsible	 for	
delivering	blood	to	the	head,	neck,	and	upper	limbs,	playing	a	crucial	role	in	maintaining	
adequate	circulation	to	these	vital	areas.	Each	of	 these	arteries	has	distinct	anatomical	
features,	specific	functions,	and	important	clinical	relevance.	The	brachiocephalic	artery,	
also	known	as	the	brachiocephalic	trunk,	is	one	of	the	three	major	branches	that	originate	
from	the	aortic	arch.	It	is	unique	in	that	it	is	the	only	one	of	these	branches	to	bifurcate,	
providing	a	critical	blood	supply	pathway	to	the	right	side	of	the	head	and	neck	and	the	
right	upper	limb.	The	brachiocephalic	artery	travels	upward	until	it	divides	into	the	right	
common	carotid	artery	and	the	right	subclavian	artery.	This	bifurcation	occurs	at	the	level	
of	 the	right	sternoclavicular	 joint.	The	common	carotid	arteries	are	vital	 for	supplying	
blood	to	the	head	and	neck.	There	are	two	common	carotid	arteries,		the	right	common	
carotid	 artery,	which	originates	 from	 the	brachiocephalic	 artery,	 and	 the	 left	 common	
carotid	artery,	which	directly	branches	off	 the	aortic	 arch.	The	 subclavian	arteries	are	
major	arteries	that	supply	blood	to	the	upper	limbs.	The	right	subclavian	artery	branches	
off	 from	the	brachiocephalic	artery,	while	 the	 left	 subclavian	artery	directly	originates	
from	the	aortic	arch.	
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Muscular	arteries	are	medium-sized	arteries	that	distribute	blood	to	specific	organs	and	
tissues.	 Examples	 include	 the	 radial,	 femoral,	 and	 coronary	 arteries.	 Unlike	 elastic	
arteries,	 muscular	 arteries	 have	 a	 thicker	 tunica	 media	 composed	 mainly	 of	 smooth	
muscle	cells,	which	gives	them	greater	control	over	blood	flow	through	vasoconstriction	
and	vasodilation.	Their	key	functions	include	blood	distribution	as	they	direct	blood	to	
various	parts	of	 the	body	based	on	 the	body’s	needs	and	regulation	of	blood	 flow	and	
pressure	as	their	muscular	walls	can	contract	or	relax	to	regulate	the	amount	of	blood	
flowing	to	different	tissues,	maintaining	systemic	blood	pressure.	
	
The	coronary	arteries	are	a	unique	subset	of	muscular	arteries	with	the	crucial	task	of	
supplying	blood	 to	 the	heart	muscle,	or	myocardium.	Their	 structure	and	 function	are	
finely	adapted	to	meet	the	heart’s	high	metabolic	demands,	ensuring	that	the	myocardium	
receives	a	continuous	and	adequate	supply	of	oxygen	and	nutrients.	Given	the	heart’s	role	
as	the	central	pump	of	the	circulatory	system,	maintaining	the	health	and	functionality	of	
the	coronary	arteries	is	essential	for	overall	cardiovascular	health.	The	coronary	arteries	
are	 strategically	 positioned	 to	 optimize	blood	delivery	 to	 the	heart	muscle	 (Figure	4).	
They	 originate	 from	 the	 base	 of	 the	 aorta,	 just	 above	 the	 aortic	 valve,	 ensuring	 they	
receive	the	freshest,	most	oxygen-rich	blood	immediately	after	it	is	pumped	from	the	left	
ventricle.	The	left	coronary	artery	(LCA)	quickly	bifurcates	into	two	major	branches,	the	
left	anterior	descending	(LAD)	artery	that	travels	down	the	front	of	the	heart,	supplying	
blood	 to	 the	 front	 and	 bottom	 of	 the	 left	 ventricle	 and	 the	 front	 of	 the	 septum,	 the	
circumflex	artery	that	encircles	the	heart	muscle,	providing	blood	to	the	outer	side	and	
back	of	the	heart.	The	right	coronary	artery	(RCA)	runs	along	the	right	side	of	the	heart	
and	primarily	supplies	the	right	atrium,	right	ventricle,	and	parts	of	the	bottom	portion	of	
both	the	left	ventricle	and	the	septum	and	branches	into	the	posterior	descending	artery	
(PDA)	which	 supplies	 the	 back	 of	 the	 heart.	 The	 coronary	 arteries	 are	 integral	 to	 the	
heart’s	performance.	By	providing	a	continuous	supply	of	oxygen	and	essential	nutrients,	
they	ensure	the	myocardium	maintains	its	vigorous	contractile	function.	This	is	especially	
critical	during	periods	of	increased	physical	activity	when	the	heart's	demand	for	oxygen	
escalates	(Silverthorn,	2020).	
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Figure	4.	Coronary	arteries	(Online	resources	3)	

Peripheral	arteries	encompass	all	arteries	outside	the	heart	and	brain,	with	a	primary	role	
in	 supplying	 blood	 to	 the	 limbs	 and	 peripheral	 organs.	 These	 arteries	 are	 crucial	 for	
maintaining	 the	 health	 and	 functionality	 of	 various	 tissues	 throughout	 the	 body.	 Key	
examples	of	peripheral	arteries	include	the	femoral,	popliteal,	and	iliac	arteries,	each	of	
which	plays	a	vital	role	in	the	vascular	system.	Peripheral	arteries	are	characterized	by	
their	extensive	branching	and	distribution,	ensuring	comprehensive	blood	supply	to	the	
extremities	and	peripheral	organs.	The	femoral	artery	is	a	major	blood	vessel	in	the	thigh	
and	the	main	arterial	supply	to	the	lower	limb.	It	continues	from	the	external	iliac	artery	
and	branches	into	the	deep	femoral	artery,	which	supplies	blood	to	the	deep	structures	of	
the	thigh.	The	femoral	artery	continues	with	the	popliteal	artery	which	runs	through	the	
popliteal	 fossa	 (behind	 the	 knee)	 and	 branches	 into	 the	 anterior	 and	 posterior	 tibial	
arteries,	supplying	blood	to	the	lower	leg	and	foot.	The	common	iliac	arteries	branch	from	
the	aorta	and	further	divide	into	the	internal	and	external	iliac	arteries.	The	internal	iliac	
arteries	supply	the	pelvic	organs,	while	the	external	iliac	arteries	continue	as	the	femoral	
arteries	to	supply	the	lower	limbs.	
Peripheral	arteries	are	essential	 for	delivering	oxygenated	blood	to	tissues	throughout	
the	 body,	 supporting	 various	 physiological	 functions	 necessary	 for	 maintaining	
homeostasis	and	overall	health.	
	
Arteries	branch	into	smaller	vessels	known	as	arterioles,	which	regulate	blood	flow	into	
capillary	beds	through	the	contraction	and	relaxation	of	smooth	muscle	cells.	This	process	
is	crucial	for	controlling	blood	pressure	and	directing	blood	flow	to	specific	tissues	based	
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on	their	metabolic	needs.	They	have	a	thin	tunica	media	composed	of	one	or	two	layers	of	
smooth	muscle	cells.	
	

2.2. Atherosclerosis 
Atherosclerosis	of	the	coronary	arteries	is	a	chronic,	progressive	condition	characterized	
by	the	buildup	of	plaque	within	the	arterial	walls.	Coronary	artery	disease	(CAD),	more	
specifically	 coronary	 atherosclerosis	 (CATS),	 is	 one	 of	 the	 leading	 causes	 of	 death	
worldwide,	accounting	for	approximately	17.9	million	deaths	annually	(Su	et	al.,	2023).	It	
is	a	condition	marked	by	the	accumulation	of	plaque	on	the	artery	wall,	which	is	made	up	
of	 fat,	 cholesterol,	 calcium,	 and	 other	 components.	 This	 causes	 arteries	 to	 gradually	
narrow,	eventually	occluding	and	preventing	blood	flow	(Libby	et	al.,	2011)	(Figure	5).	

	
Figure	5.	Atherosclerotic	progression	and	thickening	of	the	artery	(Hirahatake	et	al.,	2021)	

	
The	most	prevalent	signs	and	symptoms	of	CAD	are	chest	pain	and	discomfort,	which	are	
medically	known	as	angina	(Shao	et	al.,	2020).	Excessive	plaque	buildup	in	the	arteries,	
which	 obstructs	 blood	 flow	 to	 the	 heart	 and	 the	 rest	 of	 the	 body,	 causes	 the	 angina.	
Reduced	oxygen	and	nutrition	delivery	as	a	result	of	this	insufficient	blood	flow	runs	the	
risk	of	causing	tissue	damage	and,	in	extreme	circumstances,	even	death	(Ahmed,	2016).	
Obesity,	physical	inactivity,	an	unhealthy	diet,	smoking,	a	family	history	of	CAD	or	heart	
disease,	 and	 comorbidities	 such	 as	 diabetes,	 high	 blood	 pressure,	 and	 elevated	 blood	
cholesterol	levels	are	all	risk	factors	contributing	to	coronary	artery	disease	(Yusuf	et	al.,	
2020).	The	significance	of	early	detection	and	prevention	techniques	 is	emphasized	by	
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the	fact	that	many	of	these	characteristics	can	be	altered	by	alterations	in	lifestyle	and	
medical	 treatment	(Arnett	et	al.,	2019).	Aside	 from	causing	partial	or	 total	blockage	of	
arteries,	plaque	can	separate	from	the	artery	wall	and	flow	into	the	bloodstream,	resulting	
in	an	acute	thrombotic	event	(Bentzon	et	al.,	2014).	This	can	lead	to	a	heart	attack	or	a	
stroke,	 which	 both	 have	 high	morbidity	 and	 death	 rates	 (Benjamin	 et	 al.,	 2018).	 It	 is	
essential	 to	 comprehend	 the	 relevance	 of	 factors	 influencing	 the	 evolution	 of	
atherosclerotic	 lesions	 in	 order	 to	 properly	 treat	 and	 prevent	 future	 cardiac	 events.	
Inflammation,	endothelial	dysfunction,	and	oxidative	stress	are	a	few	of	the	mechanisms	
that	have	been	linked	to	the	development	of	atherosclerosis	in	studies	(Higashi,	2022).	It	
has	been	demonstrated	that	pharmaceutical	therapies	that	target	these	processes,	such	
as	 statins	 and	 antihypertensive	 drugs,	 lower	 the	 incidence	 of	 CAD-related	 events	
(Bertrand	et	al.,	2016).	In	addition,	crucial	elements	of	CAD	management	and	prevention	
include	stress	management,	regular	physical	activity,	a	heart-healthy	diet,	and	quitting	
smoking	(Westland	et	al.,	2020).	These	adjustments	can	enhance	cardiovascular	health	
overall,	 lower	 the	 risk	 of	 future	 cardiac	 events,	 and	 slow	 the	 development	 of	
atherosclerosis.	Successful	treatment	and	prevention	of	coronary	artery	disease	depend	
on	 an	 understanding	 of	 the	 variables	 influencing	 the	 development	 of	 atherosclerotic	
plaques.	It	is	possible	to	lessen	the	overall	burden	of	CAD	and	enhance	patient	outcomes	
by	focusing	on	modifiable	risk	factors	and	the	underlying	processes	of	atherosclerosis.	It	
is	well	known	that	atherosclerosis	occurs	because	of	an	interplay	of	a	variety	of	factors.	
The	correlations	of	these	factors	to	atherosclerosis	is	explored	computationally	in	order	
to	aid	physicians	 in	treating	the	exact	cause	of	CATS,	however	research	has	found	that	
most	 commonly	 several	 factors	 influence	 characteristics	 and	 hence	 optimal	 treatment	
strategy	in	the	case	of	arterial	plaque	(Lechner	et	al.,	2019).	For	this	reason,	it	is	crucial	to	
apply	a	multiscale	approach	to	analysis	of	risk	factors	leading	to	CATS,	starting	from	cells	
that	 make	 up	 the	 coronary	 arteries,	 through	 tissues	 to	 the	 entire	 organism	 and	 its	
environment	(Devinder	et	al.,	2020).	Pinpointing	the	most	significant	combination	of	risk	
factors	for	CATS	development	and	treatment	prognosis	would	enable	physicians	to	target	
the	disease	with	optimal	treatment	strategy	and	enable	better	patient	outcomes.		
The	development	of	atherosclerotic	plaques	in	the	coronary	arteries	typically	progresses	
through	the	following	stages	(Rafieian-Kopaei	et	al.,	2014)	(Figure	6):		

• endothelial	dysfunction	
• lipid	accumulation	and	foam	cell	formation	
• plaque	progression	
• plaque	destabilization	and	rupture	
• thrombus	formation	and	occlusion	
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Figure	6.	Atherosclerosis	progression	(Bardin,	2022)	

	
The	 initial	step	 in	atherosclerosis	 is	endothelial	 injury,	which	can	be	caused	by	factors	
such	 as	 hypertension,	 smoking,	 hyperlipidemia,	 and	 diabetes.	 This	 injury	 leads	 to	
increased	 permeability	 and	 adhesion	 of	 leukocytes	 to	 the	 endothelium.	 Low-density	
lipoprotein	(LDL)	cholesterol	penetrates	the	damaged	endothelium	and	accumulates	in	
the	intima.	Oxidized	LDL	(oxLDL)	is	particularly	atherogenic	and	triggers	an	inflammatory	
response.	Monocytes	adhere	to	the	endothelium,	migrate	into	the	intima,	and	differentiate	
into	 macrophages.	 These	 macrophages	 ingest	 oxLDL	 and	 transform	 into	 foam	 cells,	
creating	 fatty	 streaks.	 Smooth	 muscle	 cells	 migrate	 from	 the	 media	 to	 the	 intima,	
proliferate,	and	produce	extracellular	matrix	components	such	as	collagen	and	elastin.	
This	leads	to	the	formation	of	a	fibrous	cap	over	the	lipid	core,	forming	a	stable	plaque.	
Plaques	can	become	unstable	due	to	continuous	inflammation	and	enzymatic	degradation	
of	the	fibrous	cap.	If	the	cap	ruptures,	it	exposes	the	underlying	thrombogenic	material,	
leading	 to	 platelet	 aggregation	 and	 thrombus	 formation.	 Thrombus	 formation	 can	
partially	or	completely	occlude	the	coronary	artery,	leading	to	acute	coronary	syndromes	
such	as	unstable	angina,	non-ST-segment	elevation	myocardial	 infarction	(NSTEMI),	or	
ST-segment	elevation	myocardial	infarction	(STEMI)	(Rafieian-Kopaei	et	al.,	2014).	
	
Atherosclerosis	of	the	peripheral	arteries,	often	referred	to	as	peripheral	artery	disease	
(PAD),	 is	 a	 chronic	 condition	 characterized	by	 the	accumulation	of	plaques	within	 the	
arterial	walls,	leading	to	narrowed	and	hardened	arteries	that	impair	blood	flow	to	the	
limbs.	This	condition	primarily	affects	the	arteries	that	supply	the	legs	and	can	result	in	
significant	morbidity.	 A	 comprehensive	 understanding	 of	 the	 pathophysiology,	 clinical	
manifestations,	 diagnostic	 approaches,	 and	 treatment	 strategies	 for	 peripheral	 artery	
atherosclerosis	 is	 essential	 for	 effective	 management	 and	 prevention	 of	 severe	
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complications.	 Same	 as	 with	 CATS,	 PAD	 involves	 complex	 interactions	 among	 lipid	
metabolism,	 endothelial	 dysfunction,	 inflammatory	 responses,	 and	 genetic	
predispositions	following	the	same	pattern	of	plaque	progression	with	the	difference	of	
the	effect	of	thrombus	formation,	where	in	PAD	it	can	partially	or	completely	occlude	the	
artery,	leading	to	critical	limb	ischemia	or	acute	limb	ischemia,	which	can	cause	severe	
tissue	damage	(Signorelli	et	al.,	2020).	
	

2.3. Artery biomechanics 
The	mechanical	properties	of	arteries	are	determined	by	their	composition	and	structure,	
allowing	 them	 to	 perform	 essential	 functions	 in	 the	 cardiovascular	 system.		
Understanding	 artery	 biomechanics	 is	 crucial	 for	 diagnosing	 and	 managing	
cardiovascular	diseases	such	as	hypertension,	atherosclerosis,	and	aneurysms.	Changes	
in	arterial	compliance	and	stiffness	are	early	indicators	of	vascular	dysfunction	and	can	
predict	cardiovascular	risk	(Carpenter	et	al.,	2020).	
Arteries	are	highly	elastic	vessels	due	to	the	presence	of	elastic	fibers	in	the	tunica	media,	
particularly	 in	 large	 elastic	 arteries	 such	 as	 the	 aorta	 and	 pulmonary	 arteries.	 This	
elasticity	allows	arteries	to	expand	and	recoil	in	response	to	changes	in	blood	pressure,	
converting	 pulsatile	 flow	 from	 the	 heart	 into	 a	 steady	 flow	 through	 smaller	 vessels.	
Arterial	compliance	(C)	is	the	ability	of	arteries	to	stretch	and	accommodate	changes	in	
blood	volume	without	a	significant	increase	in	pressure.	It	is	calculated	as:	

𝐶 =
∆𝑉
∆𝑃	

Eq.	1	

	
Where:	

• ∆𝑉	is	change	in	blood	volume	
• ∆𝑃	is	change	in	pressure	

	
Distensibility	refers	to	the	ability	of	arteries	to	stretch	in	response	to	pressure	changes.	It	
is	influenced	by	the	elastic	fibers	in	the	tunica	media	and	determines	how	much	the	artery	
can	expand	in	response	to	each	pulse	of	blood	ejected	from	the	heart.	The	distensibility	
coefficient	(DC)	is	defined	as:	

𝐷𝐶 =
∆𝐷

𝐷 × ∆𝑃	
Eq.2	

	
	
Where:	

• ∆𝐷	is	change	in	arterial	diameter	
• 𝐷	is	baseline	arterial	diameter	
• ∆𝑃	is	change	in	pressure	(usually	the	pulse	pressure)	

	
Arteries	exhibit	viscoelastic	behavior,	meaning	they	demonstrate	both	elastic	(reversible	
deformation)	and	viscous	(time-dependent	deformation)	properties.	The	viscoelasticity	
of	arteries	helps	them	adapt	to	different	flow	conditions	and	resist	damage	from	pressure	
fluctuations	over	time	(Carpenter	et	al.,	2020).	
	
Arteries	 contribute	 significantly	 to	 hemodynamics,	 the	 study	 of	 blood	 flow	 dynamics	
within	the	cardiovascular	system.	Arterial	pressure-volume	(P-V)	relationships	describe	
how	 changes	 in	 arterial	 pressure	 affect	 arterial	 volume.	 The	 compliance	 of	 arteries	
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influences	these	relationships,	with	stiffer	arteries	showing	less	change	in	volume	for	a	
given	change	in	pressure.	Arteries	transmit	the	pulsatile	pressure	wave	generated	by	each	
heartbeat	 (systole)	 from	 the	 heart	 to	 the	 periphery.	 Pulse	 wave	 velocity	 (PWV)	 is	 a	
measure	 of	 how	quickly	 this	wave	 travels	 along	 the	 arterial	 tree	 and	 is	 influenced	 by	
arterial	stiffness.	Increased	PWV	is	associated	with	aging	and	vascular	disease.	Arteries	
act	as	a	Windkessel,	or	pressure	reservoir,	dampening	the	pulsatile	nature	of	blood	flow.	
This	 effect	 is	 facilitated	 by	 the	 elasticity	 of	 large	 arteries,	 which	 store	 energy	 during	
systole	and	release	it	during	diastole	to	maintain	continuous	flow	(Carpenter	et	al.,	2020).		
	
Arterial	 biomechanics	 plays	 a	 critical	 role	 in	 the	 initiation,	 progression,	 and	 clinical	
consequences	of	atherosclerosis.	Mechanical	forces	such	as	shear	stress	and	mechanical	
stretch	 influence	 endothelial	 function,	 arterial	 remodeling,	 and	 the	 development	 of	
atherosclerotic	 plaques	 (Carpenter	 et	 al.,	 2020).	 Understanding	 these	 biomechanical	
factors	provides	insights	into	disease	mechanisms	and	informs	strategies	for	preventing	
and	managing	cardiovascular	diseases	associated	with	atherosclerosis	(Figure	7).	

	
Figure	7.	Aterial	biomechanics	(Bacigalupi	et	al.,	2024)	

Shear	stress	(𝜏)	is	the	frictional	force	exerted	by	blood	flow	on	the	endothelial	cells	lining	
the	arterial	wall.	It	is	calculated	using	the	formula:	

𝜏 = h ∙
𝑑𝑢
𝑑𝑦	

Eq.	3	

	
Where:	

• h	is	the	blod	viscosity	
• !"

!#
	is	the	velocity	gradient	perpendicular	to	the	vessel	wall	(rate	of	change	of	blood	

flow	velocity	with	respect	to	distance	from	the	wall)	
	
Normal,	laminar	blood	flow	generates	shear	stress	that	promotes	endothelial	health	and	
function.	 However,	 disturbed	 or	 turbulent	 flow	 patterns,	 such	 as	 those	 occurring	 at	
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arterial	 bends	 or	 bifurcations,	 can	 lead	 to	 low	 and	 oscillatory	 shear	 stress.	 These	
disturbed	flow	patterns	are	associated	with	endothelial	dysfunction	and	the	initiation	of	
atherosclerosis	.	While	low	shear	stress	reduces	the	production	of	nitric	oxide	(NO)	and	
other	 protective	 factors	 by	 endothelial	 cells,	 promoting	 inflammation	 and	 leukocyte	
adhesion	 to	 the	 arterial	 wall,	 oscillatory	 shear	 stress	 contributes	 to	 the	 activation	 of	
endothelial	 cells,	 increased	 permeability	 of	 the	 endothelium,	 and	 enhanced	 uptake	 of	
lipids	into	the	arterial	wall	(Carpenter	et	al.,	2020).		
Arterial	 biomechanics	 also	 involves	mechanical	 stretch,	 particularly	 in	 regions	 where	
arteries	 experience	 higher	 pressures	 or	 pulsatile	 flow.	 Chronic	 exposure	 to	 increased	
mechanical	stretch	can	lead	to	arterial	remodeling,	characterized	by	changes	in	arterial	
wall	 thickness,	diameter,	 and	 composition.	The	pulsatile	nature	of	blood	 flow	subjects	
arteries	to	cyclic	stretch	during	each	cardiac	cycle.	This	cyclic	stretch	influences	vascular	
smooth	muscle	cell	phenotype,	extracellular	matrix	synthesis,	and	overall	arterial	wall	
structure	(Carpenter	et	al.,	2020).	
	

2.4. Diagnosis and treatment of atherosclerosis 
Diagnosis	 and	 treatment	 of	 atherosclerosis	 in	 these	 critical	 arteries	 are	 essential	 for	
preventing	 complications	 such	 as	 myocardial	 infarction	 (heart	 attack)	 and	 stroke.	
Diagnosis	 often	 begins	 with	 a	 thorough	 clinical	 evaluation,	 including	 assessing	 the	
patient's	 medical	 history,	 risk	 factors	 (e.g.,	 smoking,	 hypertension,	 diabetes),	 and	
symptoms	such	as	chest	pain	(angina)	or	transient	neurological	symptoms	suggestive	of	
stroke.		
Imaging	 is	 the	 most	 accurate	 diagnostic	 modality	 for	 atherosclerosis	 and	 imaging	
modalities	used	depend	on	the	artery	affected	by	atherosclerosis.	Coronary	angiography	
and	coronary	computed	tomography	(CTA)	are	the	golden	standard	and	it’s	alternative	
for	 diagnosing	 coronary	 artery	 atherosclerosis	 respectively.	 Coronary	 angiography	 is	
considered	 the	 gold	 standard	 for	 evaluation	of	 coronary	 artery	disease	 (CAD).	 It	 is	 an	
invasive	procedure	 involvung	 insertion	of	 a	 catheter	 into	 a	blood	vessel	 (typically	 the	
femoral	 or	 radial	 artery)	 followed	 by	 injecting	 a	 contrast	 dye	 to	 outline	 the	 coronary	
arteries	 with	 X-ray	 imaging	 thus	 providing	 high-resolution	 images	 that	 reveal	 the	
presence,	location,	and	severity	of	coronary	artery	narrowing	or	blockages	(stenosis).	It	
is	 essential	 for	 guiding	 decisions	 on	 interventions	 such	 as	 percutaneous	 coronary	
intervention	(PCI)	or	coronary	artery	bypass	grafting	(CABG)	in	patients	with	significant	
CAD.	 Coronary	 CTA	 has	 emerged	 as	 a	 valuable	 non-invasive	 imaging	 technique	 for	
evaluating	coronary	artery	anatomy	and	detecting	plaque	buildup	and	stenosis.	It	utilizes	
computed	tomography	(CT)	technology	to	acquire	detailed,	three-dimensional	images	of	
the	 coronary	 arteries	 without	 the	 need	 for	 invasive	 procedures.	 Coronary	 CTA	 is	
particularly	useful	for	assessing	patients	with	suspected	CAD,	providing	comprehensive	
visualization	of	plaque	characteristics	and	coronary	artery	morphology.	It	plays	a	crucial	
role	 in	 risk	 stratification	and	 treatment	planning,	especially	 in	patients	with	equivocal	
stress	test	results	or	atypical	symptoms	(Robert	et	al.,	2019).	
Optical	 cogerence	 tomography	 (OCT)	 is	 an	 intravascular	 imaging	 technique	 that	 uses	
near-infrared	light	to	create	high-resolution	cross-sectional	 images	of	the	arterial	wall.	
Incorporating	OCT	alongside	other	imaging	modalities	enhances	the	diagnostic	accuracy	
and	therapeutic	management	of	atherosclerosis,	providing	clinicians	with	comprehensive	
insights	into	arterial	structure	and	pathology.	Its	ability	to	visualize	fine	details	within	the	
arterial	 wall	 makes	 OCT	 a	 valuable	 tool	 in	 both	 research	 and	 clinical	 practice	 for	
optimizing	 patient	 care	 and	 outcomes.	 It	 provides	 detailed	 visualization	 of	 arterial	



17 
 

morphology,	 including	plaque	characteristics	such	as	thickness,	composition	(lipid-rich	
or	fibrous),	and	presence	of	microcalcifications.	It	offers	superior	resolution	compared	to	
other	 imaging	 modalities,	 enabling	 precise	 assessment	 of	 plaque	 morphology	 and	
characteristics.	 This	 information	 aids	 in	 determining	 the	 vulnerability	 of	 plaques	 to	
rupture	and	guiding	treatment	strategies.	Additionally,	OCT	helps	in	differentiating	stable	
from	unstable	plaques,	 thereby	assisting	 in	risk	stratification	 for	 future	cardiovascular	
events.	OCT	 is	particularly	useful	during	coronary	 interventions,	such	as	percutaneous	
coronary	 intervention	 (PCI),	 to	 assess	 stent	 placement	 and	 optimize	 procedural	
outcomes.	 It	 allows	 clinicians	 to	 visualize	 stent	 apposition	 and	expansion,	 detect	 edge	
dissections,	and	evaluate	residual	plaque	burden.	OCT-guided	interventions	contribute	to	
improved	procedural	success	rates	and	reduced	complications	(Prati	et	al.,	2010,	Bouma	
et	al.,	2017).		
	
When	 carotid	 atherosclerosis	 is	 suspected,	 either	 carotid	 ultrasound	 or	 carotid	
angiography	 are	 employed	 as	 imaging	 strategies.	 Carotid	 ultrasound	 is	 a	 non-invasive	
imaging	modality	that	utilizes	high-frequency	sound	waves	to	assess	blood	flow	dynamics	
and	 detect	 abnormalities	 within	 the	 carotid	 arteries.	 It	 is	 particularly	 effective	 in	
evaluating	 carotid	 artery	 stenosis,	 a	 significant	 risk	 factor	 for	 ischemic	 stroke.	Carotid	
ultrasound	can	visualize	plaque	formation,	measure	intima-media	thickness	(IMT)	–	an	
early	 marker	 of	 atherosclerosis,	 and	 assess	 blood	 flow	 velocities	 using	 Doppler	
ultrasound.	This	imaging	technique	is	 invaluable	for	identifying	patients	at	high	risk	of	
stroke	 and	 guiding	 decisions	 on	 further	 management,	 including	 medical	 therapy	 or	
surgical	intervention	(Polak,	2001).	Similar	to	coronary	angiography,	carotid	angiography	
involves	the	insertion	of	a	catheter	into	a	blood	vessel	(typically	the	femoral	artery)	and	
the	injection	of	contrast	dye	to	visualize	the	carotid	arteries	under	X-ray	imaging	(Jackson	
and	Meaney,	2015,	Sonka	et	al.,	2000).	This	invasive	procedure	provides	detailed	images	
of	 the	 carotid	 artery	 anatomy	 and	 allows	 for	 precise	 assessment	 of	 narrowing	 or	
blockages	 (stenosis).	 Carotid	 angiography	 is	 typically	 reserved	 for	 cases	 where	 non-
invasive	imaging	results	are	inconclusive	or	when	surgical	intervention,	such	as	carotid	
endarterectomy	 or	 carotid	 artery	 stenting,	 is	 being	 considered.	 It	 provides	 critical	
information	 for	 planning	 surgical	 procedures	 and	 optimizing	 patient	 outcomes	 in	
individuals	with	significant	carotid	artery	disease	(Pizzolato	et	al.,	2014).	
	
The	 diagnostic	 process	 for	 PAD	 typically	 begins	 with	 a	 thorough	 clinical	 assessment.	
Healthcare	providers	evaluate	the	patient's	medical	history,	including	risk	factors	such	as	
smoking,	 diabetes,	 hypertension,	 hyperlipidemia,	 and	 family	 history	 of	 cardiovascular	
disease	(Peach	et	al.,	2012).	Symptoms	suggestive	of	PAD	include:	
	

• Intermittent	Claudication:	Pain,	 cramping,	or	 fatigue	 in	 the	 legs	during	physical	
activity	that	resolves	with	rest.	

• Rest	 Pain:	 Pain	 in	 the	 feet	 or	 toes	 that	 worsens	 at	 night	 and	 improves	 when	
dangling	the	legs	over	the	edge	of	the	bed.	

• Non-healing	Wounds:	Ulcers	or	sores	on	the	legs	or	feet	that	do	not	heal	properly.	
• Coolness	 or	 Pallor:	 Reduced	 temperature	 or	 color	 changes	 in	 the	 affected	 limb	

compared	to	the	unaffected	limb.	
	
The	ankle-brachial	index	(ABI)	serves	as	the	first	tool	in	the	diagnosis	and	assessment	of	
peripheral	artery	disease	(PAD),	a	condition	where	arteries	supplying	blood	to	the	limbs	
become	narrowed	or	blocked	due	to	atherosclerosis	(Crawford	et	al.,	2016).	This	simple	
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yet	effective	test	compares	blood	pressure	measurements	taken	at	the	ankles	and	arms,	
offering	valuable	insights	into	the	extent	of	arterial	obstruction	and	consequent	reduction	
in	 blood	 flow	 to	 the	 legs.	 During	 the	 ABI	 test,	 a	 healthcare	 provider	 uses	 a	 Doppler	
ultrasound	probe	to	measure	systolic	blood	pressure	in	both	arms	and	both	ankles.	This	
non-invasive	procedure	involves	applying	the	probe	to	these	areas	to	detect	and	record	
blood	 flow	 sounds,	which	 are	 indicative	 of	 arterial	 pressure.	 The	ABI	 is	 calculated	 by	
dividing	the	highest	systolic	blood	pressure	measured	at	the	ankle	by	the	highest	systolic	
blood	pressure	measured	in	either	arm.	A	normal	ABI	falls	within	the	range	of	0.90	to	1.30,	
indicating	relatively	unobstructed	blood	flow	to	the	lower	extremities.	Conversely,	an	ABI	
lower	than	0.90	suggests	the	presence	of	PAD,	with	severity	categorized	as	follows:	
	

• An	 ABI	 between	 0.70	 and	 0.90	 typically	 indicates	 mild	 PAD,	 where	 arterial	
narrowing	may	cause	intermittent	claudication	(leg	pain	during	activity).	

• An	ABI	ranging	from	0.40	to	0.70	signifies	moderate	PAD,	characterized	by	more	
pronounced	symptoms	and	greater	impairment	in	blood	flow.	

• An	 ABI	 less	 than	 0.40	 indicates	 severe	 PAD,	 where	 critical	 limb	 ischemia	may	
occur,	potentially	leading	to	tissue	damage	and	non-healing	wounds.	
	

Interpreting	ABI	results	allows	healthcare	providers	to	tailor	treatment	plans	accordingly,	
aiming	 to	 alleviate	 symptoms,	 prevent	 disease	 progression,	 and	 reduce	 the	 risk	 of	
complications	such	as	limb	amputation.	Regular	monitoring	of	ABI	over	time	helps	track	
disease	progression	and	assess	the	effectiveness	of	therapeutic	interventions,	including	
lifestyle	changes,	medications,	and	surgical	procedures	aimed	at	 improving	blood	 flow	
and	enhancing	quality	of	life	for	individuals	with	PAD	(Casey	et	al.,	2019).	
	
Advanced	 imaging	 techniques	play	a	 crucial	 role	 in	 the	 comprehensive	evaluation	and	
management	of	peripheral	artery	disease	(PAD),	providing	detailed	insights	into	arterial	
anatomy,	blood	flow	dynamics,	and	the	extent	of	arterial	narrowing	or	occlusion.	These	
imaging	modalities	are	essential	 for	confirming	diagnosis,	guiding	treatment	decisions,	
and	assessing	therapeutic	outcomes.	Duplex	ultrasound	combines	traditional	ultrasound	
with	Doppler	 ultrasound	 technology	 to	 visualize	 blood	 flow	 in	 the	 arteries	 and	detect	
abnormalities	such	as	stenosis	or	occlusions.	During	the	procedure,	high-frequency	sound	
waves	are	transmitted	through	tissues,	and	the	echoes	are	captured	to	create	images	of	
blood	vessels.	Doppler	ultrasound	specifically	measures	the	speed	and	direction	of	blood	
flow,	 allowing	 healthcare	 providers	 to	 assess	 the	 severity	 and	 location	 of	 arterial	
narrowing	 in	 real-time.	Duplex	 ultrasound	 is	 particularly	 advantageous	 for	 evaluating	
PAD	 in	 the	 lower	 extremities,	 where	 it	 can	 accurately	 identify	 the	 presence	 of	
atherosclerotic	 plaques,	 measure	 blood	 flow	 velocities,	 and	 assess	 the	 hemodynamic	
significance	of	arterial	lesions	(Eiberg	et	al.,	2010).	
CTA	 is	 a	 non-invasive	 imaging	 technique	 that	 utilizes	 computed	 tomography	 CT	
technology	to	generate	detailed,	three-dimensional	images	of	the	arteries.	It	involves	the	
intravenous	 injection	 of	 contrast	 dye,	 which	 highlights	 the	 vascular	 structures	 and	
enables	 visualization	 of	 arterial	 anatomy	 with	 high	 spatial	 resolution.	 CTA	 is	 highly	
effective	 in	 identifying	 areas	 of	 stenosis,	 occlusion,	 or	 plaque	 buildup	 in	 patients	
suspected	of	having	PAD.	It	provides	comprehensive	anatomical	information	that	helps	
healthcare	providers	plan	interventions	such	as	angioplasty	or	stenting,	assess	collateral	
circulation,	 and	 evaluate	 the	 suitability	 for	 surgical	 revascularization	 procedures	
(Fleischmann	et	al.,	2006).	
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Magnetic	 resonance	 angiography	 (MRA)	 utilizes	 magnetic	 resonance	 imaging	 (MRI)	
technology	to	create	detailed	images	of	blood	vessels	without	the	use	of	ionizing	radiation.	
MRA	 is	 particularly	 advantageous	 for	 evaluating	 complex	 arterial	 anatomy,	 including	
tortuous	vessels	or	regions	with	calcified	plaques,	which	may	be	challenging	to	visualize	
with	other	imaging	modalities.	MRA	provides	multiplanar	images	that	allow	for	precise	
assessment	of	arterial	stenosis,	occlusion,	and	collateral	circulation	in	patients	with	PAD.	
It	 is	 especially	 beneficial	 for	 individuals	 with	 contraindications	 to	 iodinated	 contrast	
agents	used	in	CTA,	such	as	those	with	renal	insufficiency	or	allergies	(Nelemans	et	al.,	
2000).		
These	 advanced	 imaging	 modalities	 complement	 clinical	 evaluation	 and	 non-invasive	
tests	 like	 the	ankle-brachial	 index	(ABI),	enhancing	 the	accuracy	of	PAD	diagnosis	and	
facilitating	tailored	treatment	strategies.	By	providing	detailed	anatomical	and	functional	
information,	 duplex	 ultrasound,	 CTA,	 and	 MRA	 enable	 healthcare	 providers	 to	 make	
informed	 decisions	 regarding	 medical	 management,	 endovascular	 interventions,	 or	
surgical	 procedures	 aimed	 at	 improving	 blood	 flow	 to	 the	 affected	 limbs.	 Regular	
utilization	of	these	imaging	techniques	also	supports	longitudinal	monitoring	of	disease	
progression	and	 therapeutic	efficacy,	ensuring	optimal	care	and	outcomes	 for	patients	
with	PAD.	
	

2.5. Biochemical and genetic testing for atherosclerosis 
Biochemical	and	genetic	testing	for	atherosclerosis	supports	a	personalized	approach	to	
cardiovascular	risk	assessment	and	management	(Deric	et	al.,	2008,	Paynter	et	al.,	2016).	
Biochemical	tests	measure	specific	markers	in	the	blood	associated	with	inflammation,	
lipid	metabolism,	and	endothelial	dysfunction,	all	of	which	are	key	contributors	 to	 the	
development	 and	 progression	 of	 atherosclerosis	 (Medina-Leyte	 et	 al.,	 2021).	 A	 lipid	
profile	 measures	 levels	 of	 cholesterol,	 triglycerides,	 and	 lipoproteins	 in	 the	 blood.	
Elevated	levels	of	low-density	lipoprotein	cholesterol	(LDL-C)	are	a	major	risk	factor	for	
atherosclerosis,	as	LDL	particles	can	infiltrate	arterial	walls	and	initiate	plaque	formation.	
Conversely,	high	levels	of	high-density	lipoprotein	cholesterol	(HDL-C),	often	referred	to	
as	"good	cholesterol,"	are	associated	with	reduced	cardiovascular	risk.	The	ratio	of	total	
cholesterol	 to	 HDL-C	 is	 also	 informative,	 with	 higher	 ratios	 indicating	 increased	 risk	
(Bhatt,	2018,	Toth,	2005).	Markers	such	as	C-reactive	protein	(CRP)	and	interleukin-6	(IL-
6)	 indicate	 systemic	 inflammation,	 which	 contributes	 to	 endothelial	 dysfunction	 and	
promotes	 atherosclerosis	progression.	Elevated	 levels	 of	CRP,	 in	particular,	 have	been	
linked	to	increased	cardiovascular	risk	independent	of	traditional	risk	factors.	Endothelial	
dysfunction	precedes	atherosclerosis	development	(Held	et	al.,	2017).	Biomarkers	such	
as	soluble	adhesion	molecules	(e.g.,	sICAM-1,	sVCAM-1)	and	endothelin-1	reflect	impaired	
endothelial	 function,	 facilitating	 leukocyte	 adhesion,	 vascular	 smooth	 muscle	 cell	
proliferation,	and	plaque	formation	(Ugurlu	et	al.,	2013).		

Genetic	 testing	 assesses	 inherited	 variations	 that	 influence	 susceptibility	 to	
atherosclerosis	 and	 cardiovascular	 disease.	 While	 not	 routinely	 performed	 in	 clinical	
practice,	genetic	testing	provides	valuable	insights	into	individual	risk	profiles	and	can	
guide	 personalized	 preventive	 strategies	 (Laan	 et	 al.,	 2018).	 Familial	
hypercholesterolemia	FH	is	a	genetic	disorder	characterized	by	high	LDL-C	levels	from	
birth,	 significantly	 increasing	 the	risk	of	premature	atherosclerosis	and	cardiovascular	
events	(Khera	and	Hegele,	2020).	Genetic	testing	can	identify	mutations	in	genes	such	as	
LDLR	 (LDL	 receptor),	 APOB	 (apolipoprotein	 B),	 or	 PCSK9	 (proprotein	 convertase	
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subtilisin/kexin	 type	 9),	which	 disrupt	 normal	 lipid	metabolism	 and	 contribute	 to	 FH	
(Meshkov	et	al.,	2021).	Various	single	nucleotide	polymorphisms	(SNPs)	associated	with	
lipid	 metabolism,	 inflammation,	 and	 endothelial	 function	 have	 been	 linked	 to	
atherosclerosis	 risk.	 Examples	 include	 SNPs	 in	 genes	 encoding	 proteins	 involved	 in	
cholesterol	 transport	 (e.g.,	 ABCA1)(Fitzgerald	 et	 al.,	 2010),	 inflammation	 (e.g.,	 IL-6)	
(Schieffer	et	al.,	2004),	and	oxidative	stress	pathways	 (Batty	et	al.,	2022).	Genetic	 risk	
scores	(GRS)	integrate	multiple	genetic	variants	associated	with	cardiovascular	risk	into	
a	 single	 score.	 They	 provide	 a	 quantitative	 assessment	 of	 genetic	 susceptibility	 to	
atherosclerosis	and	can	stratify	 individuals	 into	high,	moderate,	or	 low-risk	categories.	
GRS	are	increasingly	used	in	research	and	may	eventually	inform	clinical	decision-making	
regarding	preventive	therapies	and	lifestyle	interventions	(Christiansen	et	al.,	2020).		
	

2.6. Treatment of atherosclerosis 
Effective	management	 strategies	 aim	 to	halt	CATS	progression,	 reduce	plaque	burden,	
prevent	 complications	 such	 as	myocardial	 infarction	 and	 stroke,	 and	 improve	 overall	
cardiovascular	health.	Initially,	patients	are	advised	to	make	lifestyle	modifications	that	
include:		

• Adopting	 a	 heart-healthy	 diet	 low	 in	 saturated	 fats,	 trans	 fats,	 and	 cholesterol	
while	emphasizing	 fruits,	vegetables,	whole	grains,	and	 lean	proteins	can	 lower	
LDL	cholesterol	levels	and	reduce	inflammation.	The	Mediterranean	diet,	rich	in	
olive	oil,	nuts,	and	fish,	has	shown	particular	benefit	 in	reducing	cardiovascular	
risk.	

• Engaging	in	regular	physical	activity	improves	cardiovascular	fitness,	lowers	blood	
pressure,	 promotes	 weight	 loss,	 and	 enhances	 overall	 vascular	 health.	 Aerobic	
exercises	such	as	brisk	walking	or	cycling	are	recommended,	aiming	for	at	least	
150	minutes	per	week.	

• Quitting	 smoking	 significantly	 reduces	 cardiovascular	 risk	 by	 improving	
endothelial	 function,	 decreasing	 inflammation,	 and	 lowering	 the	 formation	 of	
atherosclerotic	plaques.	

	
Pharmacotherapy	for	CATS	includes:	

• Statins	 as	 first-line	medications	 that	 lower	 LDL	 cholesterol	 levels	 and	 stabilize	
plaques.	 High-intensity	 statin	 therapy	 (e.g.,	 atorvastatin,	 rosuvastatin)	 is	
recommended	for	most	patients	with	atherosclerosis	to	achieve	LDL-C	reduction	
goals	(Lee	et	al.,	2018)		

• Antiplatelet	 agents	 like	 aspirin	 and	 other	 antiplatelet	 medications	 (e.g.,	
clopidogrel)	reduce	the	risk	of	thrombosis	and	cardiovascular	events	in	patients	
with	established	atherosclerosis.	Dual	antiplatelet	therapy	may	be	considered	in	
selected	high-risk	patients	(Patrono	et	al.,	2017)			

• Antihypertensive	drugs	for	controlling	blood	pressure	with	medications	such	as	
ACE	inhibitors,	angiotensin	II	receptor	blockers	(ARBs),	beta-blockers,	or	diuretics	
helps	prevent	plaque	progression	and	reduces	cardiovascular	risk	by	maintaining	
optimal	blood	pressure	levels	(Nissen	et	al.,	2004)		

• Antithrombotic	therapy	for	selected	patients	with	high-risk	features	such	as	recent	
myocardial	 infarction	or	 atrial	 fibrillation,	 anticoagulant	 therapy	 (e.g.,	warfarin,	
direct	oral	 anticoagulants)	may	be	 recommended	 to	prevent	 thrombotic	 events	
(Parker	and	Storey,	2021)		
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In	 cases	 where	 lifestyle	 adjustments	 and	 pharmacotherapy	 fail,	 interventional	 and	
surgical	 procedures	 are	 advised	 and	 employed.	 Angioplasty	 is	 a	 procedure	 to	 widen	
blocked	 arteries,	 involves	 inserting	 a	 catheter	 into	 the	 site	 of	 blockage	 using	 imaging	
techniques	 like	 angiography.	Before	using	drug-coated	balloons	 (DCB)	or	 drug-eluting	
stents	 (DES),	pre-dilation	with	a	percutaneous	 transluminal	angioplasty	 (PTA)	balloon	
catheter	is	recommended	(Unverdorben	et	al.,	2009).	For	DCB,	the	PTA	balloon	should	be	
1mm	smaller	than	the	artery	diameter,	while	for	DES,	it	should	match	the	artery's	nominal	
diameter.	The	pressure	applied	should	stay	below	the	balloon's	rated	burst	pressure.	If	
high	stenosis	rates	are	present,	a	two-step	pre-dilation	using	smaller	then	larger	balloons	
is	suggested.	The	balloon's	diameter	and	length	should	match	the	vessel's	size	and	lesion	
length	respectively,	with	the	total	drug	dose	not	exceeding	34,845ug.	If	residual	stenosis	
remains	above	50%	after	DCB	use,	stent	placement	is	con-sidered.	A	successful	procedure	
leaves	≤50%	residual	stenosis	(non-stented	subjects)	or	≤30%	(stented	subjects).	When	
deploying	DES,	correct	stent	positioning	is	crucial.	The	stent	should	be	slowly	deployed,	
aiming	for	an	initial	pressure	that	achieves	a	stent-to-vessel	diameter	ratio	of	about	1.1,	
held	for	30	seconds.	DES	and	DCB	are	two	innovative	medical	technologies	developed	for	
the	treatment	of	vascular	diseases,	including	CAD	and	PAD.	Both	devices	operate	on	the	
principle	 of	 lo-calized	 drug	 delivery	 to	 inhibit	 neointimal	 hyperplasia	 and	 restenosis,	
issues	 commonly	associated	with	bare-metal	 stent	 implantation	 (Grüntzig	 et	 al.,	 1978,	
Abdullah	et	al.,	2018,	Lindquist	and	Schramm,	2018).	DES	have	become	a	cornerstone	of	
percutaneous	 coronary	 intervention	 (PCI)	 for	 the	 treatment	 of	 CAD	 since	 their	
introduction	 in	 the	 early	2000s	 (Moses	 et	 al.,	 2003).	 They	 are	 composed	of	 a	metallic	
scaffold	coated	with	an	antiprolif-erative	drug	and	a	polymer	carrier	material,	designed	
to	slowly	release	the	drug	over	sev-eral	weeks	to.	The	drugs	used	in	DES,	such	as	paclitaxel	
or	sirolimus,	inhibit	the	growth	of	smooth	muscle	cells	to	reduce	restenosis	risk	(Moses	
et	al.,	2003).	Due	to	their	effective-ness	in	the	treatment	of	CAD,	DES	have	also	been	used	
for	 PAD.	 Successive	 genera-tions	 of	DES	 have	 aimed	 to	 improve	 upon	 earlier	 designs'	
limitations,	 with	 a	 focus	 on	 op-timizing	 drug	 delivery,	 reducing	 thrombosis	 risk,	 and	
enhancing	biocompatibility	(Bangalore	et	al.,	2013).	Despite	 initial	concerns	about	 late	
stent	thrombosis	(LST)	and	delayed	endothelial	heal-ing	with	first-generation	DES,	newer	
versions	have	demonstrated	improved	safety	and	ef-ficacy	outcomes,	with	lower	rates	of	
LST	and	comparable	or	superior	reductions	in	ISR	(Bangalore	et	al.,	2013).	However,	DES	
use	comes	with	risks,	including	the	prolonged	presence	of	a	foreign	object	in	the	artery,	
potentially	increasing	blood	clot	risk,	and	concerns	about	long-term	safety(Cornelissen	
and	Vogt,	2019).	On	the	other	hand,	DCB,	a	more	recent	technology,	consist	of	a	balloon	
catheter	coated	with	an	antiproliferative	drug,	which	is	released	during	balloon	inflation	
to	treat	vascular	diseases	(Byrne	et	al.,	2014).	They	have	been	utilized	primarily	in	PAD	
treatment	and	have	shown	promising	results	in	reducing	restenosis	rates	and	improving	
clinical	 outcomes.	 DCB	 deliver	 their	 drug	 load	 during	 balloon	 inflation,	with	 the	 drug	
typically	com-bined	with	a	carrier	to	facilitate	transfer	and	retention	in	the	arterial	wall	
(Hossainy	et	al.,	2008).	In	clinical	trials,	DCB	have	been	found	to	be	as	effective	as	DES	in	
treating	lesions,	with	a	lower	risk	of	restenosis	and	less	need	for	repeat	procedures.	DCB	
are	especially	effective	 in	 treating	PAD,	particularly	 in	 femoropopliteal	and	below-the-
knee	 lesions	 and	 have	 been	 investigated	 as	 an	 alternative	 to	 DES	 in	 CAD	 treatment	
(Cornelissen	et	al.,	2019).	While	DCB	have	several	advantages	over	DES,	such	as	being	less	
invasive	as	they	do	not	require	permanent	im-plantation,	they	also	come	with	their	own	
set	 of	 limitations.	 These	 include	 the	 potential	 for	 uneven	 drug	 coating,	 leading	 to	
incomplete	drug	delivery,	and	risks	of	complications	like	dissection	or	perforation.	Both	
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DES	and	DCB	represent	significant	advancements	in	the	treatment	of	vascular	diseases.	
They	share	a	common	goal	of	localized	drug	delivery	to	inhibit	restenosis	but	each	has	its	
unique	 sets	 of	 advantages	 and	 disadvantages.	 The	 choice	 between	 DES	 and	 DCB	may	
depend	on	the	specific	characteristics	of	the	patient	and	the	disease,	including	the	severity	
and	location	of	the	lesions,	the	patient's	risk	profile,	and	other	factors.	
Comparative	studies	on	DCB	and	DES	in	vascular	disease	treatment	reveal	no	signif-icant	
difference	in	major	adverse	cardiovascular	events	at	a	one-year	follow-up,	according	to	
Katsanos	et	al.	(Katsanos	et	al.,	2018).	Yet,	DCB	were	found	to	be	associated	with	a	lower	
risk	of	 target	 le-sion	revascularization	 (TLR)	 than	DES.	A	 two-year	 follow-up	study	by	
Tepe	et	al.	also	found	no	significant	difference	in	the	rate	of	primary	patency,	but	DCB	had	
a	lower	rate	of	clinically-driven	TLR	(Tepe	et	al.,	2015).	Further	research	indicates	DCB	
have	a	lower	restenosis	risk	and	TRL	than	DES	a	year	post-angioplasty,	and	they	are	more	
cost-effective	when	treating	femoropopliteal	artery	disease	due	to	their	lower	TLR	and	
overall	cost	(Alfonso	et	al.,	2018).	
Alternatively,	surgical	revascularization	and	carotid	endarterectomy	(CEA)	are	employed.	
Surgical	revascularization	is	a	crucial	intervention	for	patients	with	advanced	coronary	
artery	disease	(CAD),	where	the	buildup	of	atherosclerotic	plaque	significantly	restricts	
blood	flow	to	the	heart	muscle	(Slovut	et	al.,	2012).	This	procedure,	known	as	Coronary	
Artery	 Bypass	 Grafting	 (CABG),	 involves	 creating	 bypass	 grafts	 using	 healthy	 blood	
vessels	 sourced	 from	 elsewhere	 in	 the	 body,	 such	 as	 the	 saphenous	 vein	 or	 internal	
mammary	artery	(Alexander	and	Smith,	2016).	These	grafts	are	used	to	bypass	narrowed	
or	 blocked	 coronary	 arteries,	 restoring	 proper	 blood	 flow	 to	 the	 heart	muscle.	 CEA	 is	
typically	 recommended	 for	 symptomatic	 patients	 with	 severe	 carotid	 artery	 stenosis	
(usually	greater	than	70%)	who	have	experienced	transient	 ischemic	attacks	(TIAs)	or	
strokes	related	to	carotid	artery	disease.	CEA	involves	surgically	removing	the	buildup	of	
atherosclerotic	plaque	 from	the	 inner	 lining	of	 the	carotid	artery.	This	plaque	removal	
reduces	the	risk	of	stroke	by	restoring	proper	blood	flow	to	the	brain.	By	removing	the	
plaque,	CEA	reduces	the	risk	of	embolic	stroke	caused	by	plaque	rupture	and	thrombus	
formation	within	the	carotid	artery	(Alexander	et	al.,	2016).	
	
Laser	or	rotational	atherectomy	are	advanced	interventional	techniques	employed	in	the	
treatment	 of	 peripheral	 artery	 disease	 and	 coronary	 artery	 disease	 when	 traditional	
methods	like	angioplasty	or	stenting	may	not	be	sufficient	due	to	particularly	dense	or	
complex	 plaque	 formations	 within	 the	 arterial	 walls	 (Tomey	 et	 al.,	 2014).	 Laser	
atherectomy	 is	 particularly	 effective	 in	 cases	 where	 plaque	 has	 become	 calcified	 or	
otherwise	resistant	to	traditional	angioplasty	techniques.	It	utilizes	specialized	catheters	
equipped	with	laser	fibers	to	target	and	vaporize	plaque	deposits	within	the	arteries.	The	
procedure	 begins	 with	 the	 insertion	 of	 a	 catheter	 into	 the	 affected	 artery	 under	
fluoroscopic	guidance.	Once	positioned,	the	laser	is	activated,	emitting	high-energy	light	
pulses	that	vaporize	the	hardened	plaque	while	sparing	the	arterial	walls.	The	vaporized	
debris	is	removed	from	the	bloodstream	naturally.	By	effectively	removing	dense	plaque,	
laser	atherectomy	 improves	blood	 flow	 through	 the	 treated	artery,	 thereby	alleviating	
symptoms	 such	 as	 claudication	 (leg	 pain)	 in	 PAD	 patients	 or	 angina	 in	 CAD	 patients.	
Compared	to	traditional	surgical	interventions,	laser	atherectomy	minimizes	trauma	to	
the	 artery	 and	 surrounding	 tissues,	 which	 can	 expedite	 recovery	 times	 and	 reduce	
complications	 (Tsutsui	 et	 al.,	 2021).	 Rotational	 atherectomy	 is	 specifically	 effective	 in	
cases	where	plaque	has	become	heavily	calcified,	making	it	difficult	to	compress	with	a	
balloon	 during	 standard	 angioplasty	 procedures.	 It	 involves	 the	 use	 of	 a	 specialized	
catheter	 equipped	with	 a	 rotating	 burr	 at	 its	 tip.	 This	 burr,	 powered	 by	 a	 high-speed	
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motor,	 mechanically	 abrades	 and	 removes	 plaque	 deposits	 from	 within	 the	 arterial	
lumen.	The	procedure	is	performed	similarly	to	angioplasty,	with	the	catheter	inserted	
through	 a	 small	 incision	 in	 the	 groin	 or	wrist	 and	 advanced	 to	 the	 site	 of	 the	 arterial	
blockage	 under	 fluoroscopic	 guidance.	 	 By	 mechanically	 ablating	 calcified	 plaque,	
rotational	atherectomy	restores	arterial	patency	and	improves	blood	flow	to	the	affected	
region.	Often	used	in	conjunction	with	balloon	angioplasty	and	stent	placement,	rotational	
atherectomy	helps	prepare	the	vessel	for	optimal	stent	deployment	by	creating	a	smooth	
arterial	surface	(Gupta	et	al.,	2019).	 	
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3. Bioengineering in cardiovascular medicine 

3.1. Finite element analysis for atherosclerosis  
Finite	 element	 modeling	 of	 atherosclerosis	 plays	 a	 crucial	 role	 in	 understanding	 the	
biomechanical	behavior	of	arterial	walls	under	pathological	conditions	(Filipovic	et	al.,	
2011,	Filipovic,	2020,	Filipovic	et	al.,	2017,	Filipovic	et	al.,	2013).	Computational	models	
based	 on	 finite	 element	 analysis	 provide	 a	 powerful	 tool	 to	 simulate	 and	 analyze	 the	
complex	mechanical	interactions	that	occur	within	these	diseased	arteries	(Saveljic	et	al.,	
2020,	 Tomasevic	 et	 al.,	 2024).	 At	 its	 core,	 finite	 element	 modeling	 of	 atherosclerosis	
involves	discretizing	the	arterial	wall	into	small	geometric	elements,	each	represented	by	
a	set	of	mathematical	equations	that	describe	its	mechanical	behavior.	These	elements	are	
interconnected	at	nodes,	allowing	researchers	to	simulate	the	distribution	of	stresses	and	
strains	throughout	the	arterial	wall	under	various	physiological	conditions	(Djorovic	et	
al.,	 2020).	 Key	 factors	 influencing	 the	mechanical	 behavior	 of	 atherosclerotic	 plaques	
include	plaque	composition	(e.g.,	lipid	core,	fibrous	cap),	degree	of	calcification,	and	the	
overall	geometry	of	the	vessel.	By	incorporating	these	factors	into	finite	element	models,	
researchers	can	predict	stress	concentrations	within	the	plaque,	assess	the	risk	of	plaque	
rupture,	and	evaluate	the	effectiveness	of	different	therapeutic	interventions	(Filipovic	et	
al.,	 2011,	 Filipovic	 et	 al.,	 2014,	 Isailovic	 et	 al.,	 2017).	 Finite	 element	 models	 enable	
researchers	 to	 explore	 how	 changes	 in	 blood	 flow	 patterns,	 such	 as	 those	 caused	 by	
stenosis	 (narrowing	of	 the	 artery),	 influence	plaque	development	 and	progression.	By	
integrating	fluid-structure	interaction	simulations,	these	models	can	provide	insights	into	
the	hemodynamic	 forces	acting	on	 the	arterial	wall	and	 their	 role	 in	plaque	 formation	
(Filipovic	 et	 al.,	 2011,	 Filipovic	 et	 al.,	 2013).	 Recent	 advancements	 in	 computational	
techniques,	 coupled	 with	 improvements	 in	 imaging	 modalities	 like	 MRI	 and	 CT	
angiography,	 have	 enhanced	 the	 accuracy	 and	predictive	 capabilities	 of	 finite	 element	
models	in	studying	atherosclerosis.	These	models	not	only	contribute	to	our	fundamental	
understanding	of	disease	mechanisms	but	also	hold	promise	for	personalized	medicine	
by	guiding	clinicians	in	making	informed	decisions	regarding	patient-specific	treatment	
strategies.	
	
Biological	 systems	exhibit	behaviors	 that	arise	 from	the	actions	of	 individual	cells	and	
their	 interactions.	 Cells	 possess	 the	 ability	 to	move,	 interact,	 reproduce,	 and	 undergo	
apoptosis.	These	cellular	behaviors	collectively	 influence	 the	dynamics	of	multicellular	
biological	 systems.	 Therefore,	 modeling	 such	 systems	 necessitates	 accounting	 for	
intricate	 interactions	 among	 individual	 cells	 and	 environmental	 factors.	 Consequently,	
there	is	a	growing	trend	towards	conducting	research	at	the	multicellular	level,	employing	
various	methodologies	to	model	these	complex	biological	systems.	Behavior	of	complex	
multicellular	 systems	 in	 models	 is	 defined	 by	 representation	 of	 discrete	 autonomous	
entitites	 and	 examining	 their	 interactions	 on	 micro-level.	 This	 approach	 not	 only	
enhances	our	understanding	of	complex	biological	processes	but	also	facilitates	efficient	
and	cost-effective	virtual	experiments	(Johnson	et	al.,	2018).		
Two	commonly	utilized	systems	include	cellular	automata	models	(CA)	and	agent-based	
models	(ABM).	Both	approaches	employ	a	bottom-up	methodology	where	global	system	
behaviors	 emerge	 from	 local	 interactions	 among	 individual	 cells,	 each	 explicitly	
represented	with	defined	 local	behavioral	rules	(Hwang	et	al.,	2009).	Although	CA	and	
ABM	share	similarities,	their	primary	distinction	lies	in	how	they	model	the	environment.	
The	opperation	of	these	models	is	based	on	a	lattice	system	with	cells	occupying	specific	
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network	elements	and	 transitioning	between	 them	(Hwang	et	al.,	2009).	Alternatively,	
models	can	exist	 in	a	continuum	(lattice-free)	space,	allowing	cells	 to	reside	anywhere	
within	the	computational	domain.	Here,	the	position	of	each	cell	is	often	determined	by	
solving	kinematic	or	dynamic	equations	of	motion,	offering	ABM	a	potential	advantage	in	
realism	over	cellular	automata,	which	impose	stricter	spatial	constraints	(Zahedmanesh	
and	 Lally,	 2012).	 In	 general,	 both	 CA	 and	 ABM	 strategies	 are	 suitable	 for	 modeling	
complex	 behaviors	 such	 as	 those	 found	 in	 regulatory	 processes	 of	 the	 cardiovascular	
system,	where	individual	cell	behaviors	intricately	influence	macroscopic	outcomes	that	
are	challenging	to	predict	straightforwardly.	
	

3.2. ABM in cardiovascular medicine 
	
When	the	behavior	of	complex	biological	systems	relies	heavily	on	 interactions	among	
multiple	 cells,	 which	 are	 themselves	 influenced	 by	 changes	 in	 micro-environmental	
factors,	 employing	 a	 multi-scale	 modeling	 approach	 becomes	 essential.	 Therefore,	
methodologies	 like	 CA	 and	 ABM	 are	 used	 for	 investigating	 various	 aspects	 of	
cardiovascular	tissue	and	system	regulation	(Zahedmanesh	&	Lally,	2012).	
	
ABM	has	emerged	as	a	powerful	computational	tool	in	cardiovascular	medicine,	enabling	
researchers	 and	 clinicians	 to	 simulate	 and	 analyze	 the	 complex	 interactions	 among	
biological,	 environmental,	 and	 behavioral	 factors	 that	 influence	 cardiovascular	 health	
(Bhui	and	Hayenga,	2017,	Blagojevic	et	al.,	2022,	Corti	et	al.,	2019,	Corti	et	al.,	2020b,	Corti	
et	al.,	2021,	Corti	et	al.,	2022,	Corti	et	al.,	2023,	Tomasevic	et	al.,	2024,	Filipovic	et	al.,	2023,	
Tsompou	et	al.,	2022).	By	modeling	individual	entities,	or	"agents,"	and	their	interactions	
within	 a	 defined	 system,	 ABM	 provides	 valuable	 insights	 into	 the	 dynamics	 of	
cardiovascular	diseases,	particularly	those	related	to	atherosclerosis,	hypertension,	and	
heart	failure	(Tsompou	et	al.,	2022).	This	innovative	approach	facilitates	the	exploration	
of	scenarios	that	are	often	challenging	to	assess	through	traditional	statistical	methods	or	
experimental	 designs.	 At	 its	 core,	 ABM	 is	 a	 simulation	 technique	 that	 allows	 for	 the	
representation	of	 individual	agents	(e.g.,	cells,	tissues,	organs)	and	their	behaviors	in	a	
defined	environment.	Each	agent	operates	based	on	a	set	of	rules	and	interacts	with	other	
agents	 and	 the	 environment	 according	 to	 specific	 protocols.	 This	 individual-based	
perspective	captures	the	heterogeneity	within	populations	and	enables	the	modeling	of	
complex	 systems	 where	 emergent	 behaviors	 arise	 from	 the	 interactions	 of	 simpler	
entities	(Bhui	and	Hayenga.,	2017).	
	
In	cardiovascular	medicine,	ABM	can	simulate	various	processes,	such	as	the	progression	
of	atherosclerosis,	 the	response	of	 the	cardiovascular	system	to	 interventions,	and	 the	
impact	 of	 lifestyle	 factors	 on	 heart	 health	 (Hayenga,	 2011,	 Hayenga	 et	 al.,	 2011).	 By	
representing	 individual	patients	or	cells,	ABM	models	can	 incorporate	a	wide	range	of	
variables,	 including	 genetic	 predispositions,	 metabolic	 states,	 and	 lifestyle	 choices,	 to	
better	understand	their	contributions	to	cardiovascular	disease	risk	and	outcomes	(Corti	
et	al.,	2019;	Corti	et	al.,	2020;	Corti	et	al.,	2022).	
Atherosclerosis	 is	 a	 prime	 candidate	 for	 ABM	due	 to	 its	multifactorial	 nature	 and	 the	
interplay	 of	 various	 biological	 processes.	 ABM	 can	 simulate	 the	 progression	 of	
atherosclerotic	plaques	by	modeling	the	behavior	of	individual	cells,	such	as	endothelial	
cells,	smooth	muscle	cells,	and	macrophages,	within	the	arterial	wall	(Corti	et	al.,	2019;	
Tomasevic	 et	 al.,	 2024).	 Each	 cell	 type	 can	 have	 specific	 rules	 governing	 its	 behavior,	
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including	proliferation,	migration,	apoptosis,	and	response	to	inflammatory	stimuli.	For	
instance,	 an	 ABM	 approach	 can	 capture	 how	 lipid	 accumulation,	 oxidative	 stress,	 and	
inflammatory	responses	contribute	to	plaque	formation	and	stability.	By	simulating	the	
interactions	between	lipid	particles	and	arterial	wall	cells,	researchers	can	observe	how	
different	conditions,	such	as	hyperlipidemia	or	hypertension,	influence	the	development	
of	 atherosclerosis	 over	 time.	 These	 models	 can	 also	 explore	 how	 therapeutic	
interventions,	 such	as	 statins	or	anti-inflammatory	agents,	 affect	plaque	dynamics	and	
overall	 cardiovascular	risk	 (Bhui	et	al.,	2017;	Blagojevic	et	al.,	2022;	Corti	et	al.,	2019;	
Corti	et	al.,	2020;	Corti	et	al.,	2022;	Tomasevic	et	al.,	2024;	Filipovic	et	al.,	2023;	Tsompou	
et	al.,	2022)..		
ABM	is	also	valuable	for	modeling	cardiovascular	responses	to	various	stimuli,	including	
pharmacological	 interventions,	 exercise,	 or	 dietary	 changes.	 For	 instance,	 an	ABM	can	
simulate	the	effects	of	a	lifestyle	intervention,	such	as	increased	physical	activity,	on	the	
cardiovascular	 system.	 By	 modeling	 individual	 agents	 that	 represent	 patients	 with	
varying	levels	of	baseline	fitness	and	health	status,	researchers	can	assess	how	different	
exercise	 regimens	 impact	 cardiovascular	 health,	 including	 changes	 in	 blood	 pressure,	
heart	rate,	and	overall	 fitness.	ABM	can	also	be	used	to	evaluate	 the	effects	of	medical	
treatments	on	patient	outcomes.	By	incorporating	clinical	data	and	treatment	protocols,	
ABM	can	 simulate	how	different	patients	 respond	 to	 specific	 therapies	 based	on	 their	
unique	 profiles.	 This	 personalized	 approach	 allows	 for	 the	 exploration	 of	 tailored	
treatment	 strategies,	 identifying	 patients	who	more	 prone	 to	 benefiting	 from	 tailored	
interventions	and	under	what	circumstances.	
	

3.3. State-of-the art in ABM for atherosclerosis 
For	 instance,	 (Pappalardo	 et	 al.,	 2008)	 introduced	 a	 2D	 agent-based	 model	 aimed	 at	
simulating	 early-stage	 atherosclerosis	 and	 the	 subsequent	 immune	 system	 response.	
Their	model	comprehensively	represented	the	critical	entities	and	interactions	involved	
in	immune	processes	that	regulate	atherogenesis.	In	a	subsequent	study	(Pappalardo	et	
al.,	 2008),	 they	 explored	 the	 heightened	 risk	 of	 atherosclerosis	 due	 to	 short-term	
elevations	 in	LDL	concentration,	assessing	whether	reducing	LDL	 levels	could	mitigate	
this	 risk.	 Curtin	 and	 Zhou	 (2014)	 (Curtin	 and	 Zhou,	 2014)	 developed	 a	 2D	 ABM	 for	
simulation	of	restenosis	in	blood	vessels	occuring	after	angioplasty	and	bare-metal	stent	
implantation.	 Their	 research	 highlighted	 how	 different	 vessel	 geometries	 and	 stent	
placements	influence	restenosis	development,	using	realistic	pathologic	geometries	and	
modeling	atherosclerotic	plaque	as	an	inert	entity.	Olivares	et	al.	(2017)	(Olivares	et	al.,	
2017)	advanced	this	approach	with	a	3D	ABM	to	simulate	early	foam	cell	formation	in	the	
intima.	 They	 focused	 on	 dynamic	 interactions	 involving	 LDL	 oxidation,	 persistence	 of	
oxidized	LDL,	and	macrophage	transformation	into	foam	cells.	
	
In	addition	to	discrete	methods	like	CA	and	ABM,	robust	numerical	methods	such	as	finite	
element	 modeling	 (FEM)	 can	 be	 integrated	 into	 hybrid	 frameworks.	 FEM	 offers	
advantages	 in	 quantification	 of	 arterial	 wall	 stress	 and	 wall	 shear	 stress	 (WSS)	 role	
exploration	in	atherosclerosis	pathogenesis,	linking	mechanotransduction	at	the	cellular	
level.	Diseases	associated	with	pathogenesis	incorporate	the	release	of	specific	chemicals	
in	 the	 endothelium,	 permeability	 of	 low-density	 lipoprotein,	 cellular	 and	 extracellular	
functions,	proliferation	of	smooth	muscle	cell,	and	the	dynamics	of	extracellular	matrix	
(ECM)	(Chatzizisis	et	al.,	2007).		
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Zahedmanesh	 and	 colleagues	 developed	 an	 innovative	 hybrid	 biological	 modeling	
framework	 that	 integrates	 a	 2D	 agent-based	model	 (ABM)	 in	 continuum	 space	with	 a	
finite	 element	 model	 (FEM)	 (Zahedmanesh	 &	 Lally,	 2012).	 The	 FEM	 component	 was	
employed	 to	 quantitatively	 assess	 von	 Mises	 stresses,	 crucial	 for	 evaluating	 arterial	
damage	 following	 stent	 deployment.	 Meanwhile,	 the	 ABM	 in	 their	 work	 focused	 on	
simulating	the	migration,	proliferation,	and	degradation	of	ECM,	as	well	as	its	synthesis	
within	the	arterial	wall	due	to	restenosis	as	quantified	by	the	FE	analysis.	Previously,	this	
modeling	 framework	 successfully	 elucidated	 vascularization	 patterns	 in	 tissue-
engineered	blood	vessels,	 revealing	 insights	 into	how	scaffold	 compliance	and	 loading	
regimes	 influence	the	growth	of	vascular	smooth	muscle	cells	and	their	role	 in	 intimal	
hyperplasia	development	(Zahedmanesh	&	Lally,	2012).	
Garbey	 and	 collaborators	 developed	 another	 hybrid	 computational	 framework	 that	
integrates	Partial	Differential	Equations	 (PDE)	with	ABM	 to	 study	vascular	 adaptation	
post-acute	 interventions	 (Garbey	 et	 al.,	 2015).	 PDEs	 accurately	 describe	 continuum	
mechanics,	calculating	hemodynamic	forces	and	stress-strain	relationships	defining	the	
vascular	environment.	In	contrast,	the	fixed	grid	ABM	comprehensively	models	discrete	
cellular	 elements	 within	 the	 tissue,	 tracking	 cell	 dynamics	 including	 proliferation,	
apoptosis,	and	ECM	production	or	degradation.	This	computational	approach	was	further	
refined	to	relax	assumptions,	particularly	regarding	cellular	motion	which	ideally	should	
be	 computed	 in	 a	 continuum	 space	 rather	 than	 on	 a	 discrete	 grid.	 This	 advancement	
allows	for	a	more	realistic	simulation	of	biological	laws	governing	cellular	behavior	and	
the	active	role	of	membrane	interfaces	between	vascular	layers	(Garbey	et	al.,	2019).	
	
Current	 multiscale	 models	 of	 atherosclerosis	 capture	 the	 complex	 interplay	 between	
hemodynamics	 and	 arterial	 wall	 remodeling	 during	 plaque	 development	 and	
atherogenesis	 (Bhui	 &	 Hayenga,	 2017;	 Corti	 et	 al.,	 2019;	 Corti	 et	 al.,	 2020).	 These	
frameworks	 are	 based	 on	 coupled	 stochastic	 ABM	 for	 cellular	 dynamics	 and	 a	
hemodynamics	 module	 for	 blood	 flow	 computation.	 Bhui	 and	 Hayenga	 (2017)	
incorporated	 a	 molecular	 module	 to	 describe	 transport	 processes	 of	 inflammatory	
cytokines	and	LDL	within	arterial	walls,	applied	to	a	3D	idealized	coronary	artery	model	
to	investigate	the	role	of	wall	shear	stress	(WSS)	in	leukocyte	trans-endothelial	migration	
(TEM)	 and	 plaque	 progression.	 Computational	 fluid	 dynamics	 (CFD)	 simulations	
computed	the	WSS	profile,	used	for	initializing	the	ABM	process.	During	plaque	growth,	
changes	 in	 luminal	 geometry	 simulated	 by	 ABM	 are	 coupled	 with	 CFD	 to	 calculate	
hemodynamics	in	current	vascular	geometry	and	update	WSS	distribution.	
	
In	their	implementation,	a	3D	ABM	model	featured	a	uniform	arterial	wall	layer	covered	
by	 endothelial	 cells	 and	 leukocytes	 as	 active	 agents.	 Behavioral	 rules	 governed	
endothelial	 adhesion,	 TEM,	 and	 other	 cellular	 processes,	 with	 leukocyte	 adhesion	
probability	influenced	by	WSS,	circulating	cytokines,	and	leukocyte	concentration.	TEM	
was	defined	 relative	 to	arterial	 stiffness,	while	LDL	 transport	and	accumulation	 in	 the	
arterial	wall	depended	on	WSS	and	systemic	LDL	concentration,	modeled	according	to	
Fick's	law.	Rules	governing	LDL	oxidation	and	phagocytosis	by	monocyte-derived	foam	
cells	were	applied,	incorporating	Glagov's	remodeling	theory	which	preserves	lumen	area	
during	initial	atherosclerosis	phases	through	compensatory	outward	remodeling	(Glagov	
et	al.,	1987).		
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3.4. Applications of AI in medicine  
AI	 in	healthcare	 is	a	rapidly	evolving	 field,	offering	promising	solutions	to	some	of	 the	
most	pressing	challenges	in	this	sector.	However,	the	integration	of	AI	into	healthcare	also	
raises	various	ethical,	legal,	and	social	issues.	Consequently,	there	is	a	growing	need	for	
comprehensive	regulations	to	govern	the	use	of	AI	in	healthcare	(Shearer	et	al.,	2021).	In	
the	changing	world	of	artificial	intelligence,	the	European	Union	stands	as	a	predecessor	
of	 balance	 between	 innovation	 and	 the	 safeguarding	 of	 fundamental	 rights.	 The	 EU’s	
regulatory	framework	for	AI	is	carefully	crafted,	embodying	a	risk-based	approach	that	
distinguishes	between	high-risk	and	low-risk	AI	applications.	High-risk	AI	systems,	given	
their	 profound	 impact	 on	 safety	 and	 fundamental	 rights,	 have	 stringent	 requirements	
imposed	onto	them.	These	encompass	robust	data	governance	to	ensure	data	quality	and	
representativeness,	 comprehensive	 documentation	 for	 traceability,	 and	 explicit	
transparency	to	inform	users	about	the	AI’s	capabilities	and	limitations.	The	essence	of	
human	oversight	 is	not	 lost,	mechanisms	are	designed	 in	a	manner	that	allows	human	
intervention,	 ensuring	 that	AI	operates	within	 the	bounds	of	 safety	and	ethics.	On	 the	
other	 hand,	 low-risk	 AI	 systems	 enjoy	 a	 breath	 of	 freedom,	with	 regulations	 that	 are	
designed	 to	 foster	 innovation	 and	widespread	 adoption.	 Every	 high-risk	 AI	 system	 is	
subjected	to	a	rigorous	conformity	assessment,	and	those	that	are	deemed	approved	are	
marked	with	the	CE	marking	-	a	certificate	to	their	compliance	with	the	standards	of	the	
EU.	Yet,	 in	 this	world	of	 artificial	 intelligence,	 there	 are	practices	 that	 the	EU	holds	 in	
prohibition,	 particularly	 those	 that	 violate	 fundamental	 rights.	 Social	 scoring	 and	
manipulative	 practices	 are	 banished,	 and	 the	 use	 of	 AI	 for	 biometric	 identification	 is	
stringently	limited,	especially	in	the	sanctuaries	of	public	spaces.	The	guardians	of	these	
regulations	are	the	national	supervisory	authorities,	established	in	each	EU	member	state,	
overseen	by	the	watchful	eyes	of	the	European	Artificial	Intelligence	Board.	This	board,	a	
congregation	of	representatives	from	each	member	state	and	the	Commission,	ensures	
the	harmonious	application	of	AI	rules	across	the	grandeur	of	the	EU.	In	the	pursuit	of	
innovation	and	excellence,	the	EU	nurtures	a	dynamic	AI	ecosystem.	Small	and	medium-
sized	 enterprises	 and	 startups,	 the	 leaders	 of	 innovation,	 are	 supported	 with	 special	
provisions,	ensuring	that	the	blossoms	of	their	creativity	enriches	the	AI	landscape.	The	
EU’s	outlook	is	not	limited	to	its	borders,	it	extends	globally,	aiming	to	shape	international	
norms	 and	 standards	 for	 AI.	 It	 is	 a	 dance	 of	 diplomacy	 and	 technology,	 facilitating	
international	 data	 flows	 while	 upholding	 the	 sanctity	 of	 data	 protection.	 Public	
engagement	and	ethical	considerations	are	the	soul	of	the	EU’s	AI	regulation.	Both	public	
and	 a	 variety	 of	 stakeholders,	 are	 involved	 in	 the	 process	 of	 AI	 development	 and	
governance.	 In	 this	narrative,	 the	EU	stands	not	as	a	solitary	entity	but	as	a	collective,	
where	innovation,	ethics,	and	public	welfare	are	intertwined	in	the	artificial	intelligence	
(Krishnan	Ganapathy,	2021).	

The	 European	 Union's	 Artificial	 Intelligence	 Act	 is	 a	 comprehensive	 document	 that	
delineates	the	regulatory	landscape	for	AI	applications,	with	a	particular	focus	on	high-
risk	 systems.	 It	 carefully	outlines	 the	Parliament's	position	on	various	AI	applications,	
underscoring	 the	 imperative	 for	 stringent	 regulations	 to	 mitigate	 associated	 risks.	
Biometric	 categorization	 systems	 and	 predictive	 policing	 emerge	 as	 focal	 points	 of	
regulatory	scrutiny.	The	Parliament	advocates	for	a	prohibition	on	biometric	systems	that	
utilize	sensitive	characteristics,	such	as	gender,	race,	and	ethnicity.	Similarly,	predictive	
policing	systems,	especially	those	rooted	in	profiling,	location,	or	past	criminal	behavior,	
are	 earmarked	 for	 stringent	 oversight.	 The	 document	 elaborates	 on	 the	 expanded	
definition	 of	 high-risk	 AI	 systems,	 encapsulating	 those	 that	 pose	 a	 'significant	 risk'	 to	
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health,	 safety,	 fundamental	 rights,	 or	 the	 environment.	 AI	 applications	 deployed	 in	
political	 campaigns	 and	 by	 very	 large	 online	 platforms,	 as	 defined	 under	 the	 Digital	
Services	Act,	are	categorised	as	high-risk,	warranting	enhanced	regulatory	oversight.	The	
Act	also	addresses	general-purpose	AI	and	foundation	models,	imposing	obligations	on	
providers	 to	 safeguard	 fundamental	 rights	 and	 democracy.	 Generative	 AI	 models,	
exemplified	by	systems	like	ChatGPT,	are	subjected	to	stringent	transparency	obligations,	
ensuring	 accountability	 and	 ethical	 deployment.	 In	 the	 realm	 of	 governance	 and	
enforcement,	the	Act	empowers	national	authorities	with	unprecedented	access	to	both	
trained	and	training	models	of	AI	systems.	It	proposes	the	establishment	of	an	AI	Office	to	
facilitate	 the	 harmonised	 application	 of	 the	 AI	 Act	 across	 member	 states.	 The	 Act	
underscores	 its	 commitment	 to	 fostering	 innovation	 and	 research,	with	 a	 pronounced	
emphasis	on	the	development	and	deployment	of	free	and	open-source	AI.	High-risk	AI	
systems	 are	 subjected	 to	 a	 new	 regulatory	 regime,	 encompassing	 ex-ante	 conformity	
assessment	 and	mandatory	 registration	 in	 an	 EU-wide	 database.	 These	 systems	must	
adhere	 to	 stringent	 requirements	 spanning	 risk	 management,	 testing,	 technical	
robustness,	 data	 training	 and	 governance,	 transparency,	 human	 oversight,	 and	
cybersecurity	(Novelli	et	al.,	2023).		

United	Kingdom´s	National	Health	Services,	the	NHS,	which	offers	free	health	care,	is	at	a	
key	 point	 when	 it	 comes	 to	 regulations	 associated	 with	 AI.	 Recent	 advancements,	
especially	in	machine	learning	and	deep	learning,	have	led	to	algorithms	that	can	perform	
tasks	comparable	to	doctors,	such	as	diagnostics	and	managing	complex	treatments.	The	
NHS's	extensive	data	on	citizens'	health	throughout	their	lives	positions	it	to	be	a	leader	
in	healthcare	AI.	The	NHS	collects	a	vast	amount	of	patient	data	daily,	which	is	invaluable	
for	 training	 AI	 systems.	 However,	 this	 raises	 significant	 ethical	 and	 legal	 concerns,	
particularly	regarding	potential	misuse.	Public	trust	in	how	the	NHS	handles	patient	data	
is	crucial,	and	incidents	like	the	unauthorized	use	of	data	from	1.6	million	patients	by	the	
Royal	Free	NHS	Trust	for	AI	development	have	raised	concerns.	Ensuring	explicit	patient	
consent	for	the	use	of	their	data	in	AI	is	essential.	However,	the	actual	use	of	AI	in	the	NHS	
is	still	limited,	primarily	due	to	the	lack	of	comprehensive	policy	guidance	(Hart,	2024).	

In	 response	 to	 the	 growing	 importance	of	AI,	 the	UK	government	published	 a	 code	of	
conduct	in	2018.	This	code	outlines	expectations	for	AI	development	in	the	NHS,	focusing	
on	proper	data	handling,	algorithmic	transparency,	and	accountability.	It	aims	to	provide	
a	policy	framework	for	creating	safe	and	effective	AI	applications	in	healthcare.	However,	
this	code	is	still	in	the	initial	consultation	stage,	indicating	ongoing	development.	The	need	
for	real-life	data	in	machine	learning	presents	ethical	dilemmas,	especially	when	patient	
data	are	used	beyond	their	original	collection	purpose.	Public	trust	could	be	eroded	if	such	
incidents	 recur,	 potentially	 leading	 patients	 to	 refuse	 to	 share	 their	 information.	 The	
introduction	of	a	national	data	opt-out	program	in	2018	has	given	patients	more	control	
over	their	data,	but	maintaining	trust	and	ethical	standards	remains	a	challenge	(Piel	et	
al.,	2018).		

As	seen	in	the	example	of	NHS,	AI	is	making	significant	inroads	into	the	field	of	medicine,	
promising	enhancements	in	early	detection,	diagnosis,	innovative	therapies,	personalised	
medicine,	and	disease	surveillance.	The	rapid	development	and	widespread	application	
of	 AI	 present	 both	 opportunities	 and	 challenges,	 especially	 in	 domains	 previously	
considered	exclusive	to	human	expertise.	The	swift	evolution	of	AI	technologies	poses	a	
challenge	for	European	legislators	striving	to	keep	legislation	relevant	and	updated.	Initial	
attempts	 to	 impose	 legal	 standards	 and	 limitations	 on	 AI	 applications	 have	 primarily	
involved	soft	law,	including	codes	of	conduct,	recommendations,	and	declarations	issued	
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by	 EU	 institutions.	 A	 central	 concern	 for	 legislators	 and	 stakeholders	 is	 the	
unintelligibility	of	AI	systems.	The	explicability	of	AI,	encompassing	the	traceability	and	
explainability	of	AI	outputs,	is	crucial	to	safeguarding	individual	and	collective	rights.	The	
AI4People	 Scientific	 Committee	 established	 the	 explicability	 principle	 in	 2018,	
emphasizing	the	importance	of	intelligibility	and	accountability	in	AI	systems	(Prakash	et	
al.,	2022).		

AI	systems	used	in	healthcare	would	be	categorized	as	High-risk	AI	systems	in	terms	of	
the	EU	AI	Act.	High-risk	AI	systems	are	those	that	could	potentially	impact	people's	safety	
or	their	fundamental	rights.	In	the	context	of	healthcare,	AI	applications	could	potentially	
fall	 under	 the	 category	 of	 high-risk	 AI	 systems,	 especially	 if	 they	 are	 used	 as	 a	 safety	
component	 of	 a	 product	 or	 are	 governed	 by	 EU	 health	 and	 safety	 harmonisation	
legislation.	Such	applications	would	be	subject	to	stringent	regulations	to	ensure	safety	
and	compliance	with	ethical	standards.	The	AI	Act	aims	to	mitigate	the	risks	associated	
with	AI	applications,	ensuring	 that	 they	are	developed	and	used	 in	ways	 that	are	safe,	
ethical,	and	respect	fundamental	human	rights	(Prakash	et	al.,	2022).	

3.4.1.  Decision Support Systems in Healthcare 
Decision	Support	Systems	(DSS)	in	healthcare	are	integral	tools	that	assist	clinicians	and	
healthcare	 professionals	 in	 making	 informed	 and	 accurate	 decisions.	 These	 systems	
leverage	 a	 combination	 of	 technologies,	 data,	 and	 algorithms	 to	 provide	 insights	 and	
recommendations,	enhancing	the	quality	and	efficiency	of	healthcare	delivery.	Healthcare	
DSS	integrates	a	vast	array	of	data	sources,	including	Electronic	Health	Records	(EHRs),	
laboratory	 results,	 and	 medical	 imaging	 data.	 For	 instance,	 Kawamoto	 et	 al.	 (2005)	
demonstrated	that	the	integration	of	clinical	data	into	DSS	significantly	improves	clinical	
practice	and	patient	outcomes.	These	systems	utilize	advanced	algorithms	and	artificial	
intelligence	 to	 analyze	 complex	 datasets,	 offering	 personalized	 recommendations	 for	
patient	care.	Clinical	Decision	Support	 (CDS)	systems,	a	subset	of	DSS,	are	particularly	
notable	 for	 their	role	 in	diagnosis	and	treatment.	They	analyze	patient-specific	data	 to	
provide	evidence-based	recommendations.	A	study	by	Osheroff	et	al.	(2012)	highlighted	
the	role	of	CDS	in	reducing	medical	errors,	 improving	healthcare	quality,	and	reducing	
costs.	However,	the	implementation	of	DSS	in	healthcare	is	not	without	challenges.	

Ethical	and	privacy	concerns	are	paramount,	underscoring	the	intricate	balance	between	
technological	advancement	and	ethical	considerations.	The	ethical	implications	of	using	
DSS	were	analyzed	by	Ammenwerth	et	al	(Ammenwerth	and	Rigby,	2016).	shedding	light	
on	a	spectrum	of	concerns	that	are	as	diverse	as	they	are	complex.	One	of	the	primary	
concerns,	as	mentioned	by	both	the	EU	AI	act	and	the	UK	regulation	is	data	privacy.	With	
DSS	integrating	vast	amounts	of	sensitive	patient	data,	the	risk	of	unauthorized	access	and	
data	 breaches	 is	 a	 significant	 concern.	 Patients'	 confidential	 information,	 including	
medical	histories,	diagnoses,	and	treatment	plans,	must	be	safeguarded	with	the	utmost	
integrity.	 The	 systems	must	 comply	 with	 legal	 frameworks	 like	 the	 Health	 Insurance	
Portability	 and	 Accountability	 Act	 (HIPAA)	 in	 the	 U.S.	 or	 the	 General	 Data	 Protection	
Regulation	(GDPR)	in	Europe,	which	impose	stringent	measures	to	protect	patient	data.	
In	addition	to	privacy,	security	is	another	important	aspect.	The	infrastructure	supporting	
DSS	 must	 be	 fortified	 against	 potential	 cyber-attacks	 and	 unauthorized	 access.	 The	
integrity	of	the	data	and	the	systems	is	crucial	not	just	for	the	privacy	of	the	individuals	
but	also	for	the	accuracy	and	reliability	of	the	decision	support	provided.	A	breach	could	
not	only	compromise	privacy	but	also	the	quality	of	healthcare	delivery.	The	potential	for	
bias	 in	 algorithmic	 recommendations	 is	 also	 a	 pressing	 ethical	 issue.	 Algorithms	 are	
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designed	 and	 trained	 by	 humans,	 and	 can	 inadvertently	 inherit	 biases	 present	 in	 the	
training	 data	 or	 the	 designers.	 This	 can	 lead	 to	 skewed	 or	 unfair	 recommendations,	
impacting	 certain	 patient	 groups	 disproportionately.	 It	 underscores	 the	 need	 for	
transparency,	fairness,	and	accountability	in	the	design	and	implementation	of	algorithms	
in	 DSS.	 The	 issue	 of	 informed	 consent	 also	 looms	 large.	 Patients	must	 be	 adequately	
informed	about	how	their	data	will	be	used	and	must	have	the	autonomy	to	consent	or	
decline.	The	transparency	in	the	usage	of	data	and	the	decisions	made	by	DSS	is	integral	
to	building	trust	and	ensuring	ethical	standards	(Ammenwerth	et	al.,	2018).	

3.4.2.  AI in Diagnosis and Treatment 
Artificial	 intelligence	 continues	 to	 revolutionize	 the	 field	 of	 medical	 diagnosis,	 with	
advancements	in	machine	learning,	particularly	deep	learning,	leading	the	charge.	These	
technologies	have	proven	instrumental	in	enhancing	the	accuracy,	speed,	and	efficiency	
of	diagnosing	a	variety	of	medical	conditions.	The	integration	of	AI	in	healthcare	has	been	
a	subject	of	ongoing	research	and	development	over	the	past	few	years	(Jiang	et	al.,	2017).	
AI	systems,	particularly	machine	learning	(ML)	and	deep	learning	(DL)	algorithms,	have	
demonstrated	 unprecedented	 capabilities	 in	 diagnosing	 diseases,	 sometimes	
outperforming	human	clinicians	(Esteva	et	al.,	2019).		

In	addition	to	clinical	DSS,	application	of	AI	and	DSS	extends	towards	management	and	
maintenance	 of	 medical	 equipment.	 As	 medical	 equipment	 stands	 at	 the	 forefront	 of	
medical	 decision	 making	 it	 is	 of	 utmost	 importance	 to	 ensure	 its	 performance	 and	
accuracy.	The	European	Commission	has	stipulated	the	importance	of	this	by	introduction	
of	post-market	surveillance	as	mandatory	 in	the	new	medical	device	regulation	(MDR)	
introduced	in	2017	and	put	in	force	in	2022	(Badnjević	and	Vuković,	2020,	Badnjević	and	
Pokvić,	2020,	Badnjević	et	al.,	2022,	Badnjevic	et	al.,	2023).		

Post-market	 surveillance	 of	medical	 devices	 (Badnjević	 et	 al.,	 2015)	 has	 been	 proven	
useful	 in	 case	 studies	 conducted	 in	Bosnia	 and	Herzegovina	where	 a	 large	 number	 of	
medical	 devices	 has	 been	 deemed	 inaccurate	 on	 the	 basis	 of	 performance	 inspection	
(Gurbeta	et	al.,	2018a,	Gurbeta	and	Badnjević,	2017,	Gurbeta	et	al.,	2016a,	Gurbeta	et	al.,	
2015,	Gurbeta	et	 al.,	 2017,	Gurbeta	et	 al.,	 2018b,	Gurbeta	et	 al.,	 2016b).	As	a	 result	of	
performing	post-market	surveillance,	a	vast	amount	of	data	was	collected	and	the	team	
from	Verlab	has	decided	to	utilize	it	and	design	algorithms	capable	of	predicting	medical	
device	failure	on	the	basis	of	their	performance	throughout	the	years	(Hadžić	et	al.,	2020,	
Hrvat	 et	 al.,	 2020,	 Spahić	 et	 al.,	 2020).	 Transcending	 the	 diagnostic	 challenges	 and	
ensuring	 safe	 and	 reliable	 measurements	 made	 by	 medical	 devices,	 the	 following	
paragraphs	will	 briefly	 describe	 the	 applications	 of	 AI	 as	 DSS	 for	 aiding	 in	 diagnosis,	
treatment	and	prognosis	of	the	leading	causes	of	mortality	and	co-morbidity	worldwide.	

In	oncology,	AI	models	have	been	developed	to	predict	cancer	development,	progression	
and	 treatment	 planning	 (Nuhić	 et	 al.,	 2020,	 Spahić	 and	 Ćordić,	 2020).	 AI	 algorithms	
analyze	complex	data	sets,	including	genomic,	proteomic,	and	imaging	data,	to	identify	the	
most	 effective	 treatment	 strategies	 (Hafizović	 et	 al.,	 2021,	 Mujkić	 et	 al.,	 2022).	 By	
integrating	 and	 analyzing	 vast	 and	 complex	 genomic	 data,	 AI	 identifies	 specific	 gene	
mutations	 and	 pathways	 associated	 with	 individual	 cancers.	 This	 genomic	 insight	
facilitates	 the	 development	 and	 administration	 of	 targeted	 therapies,	 enhancing	
treatment	 efficacy	while	minimizing	 adverse	 effects.	 Zhang	 et	 al.	 (2019)	 (Zhang	 et	 al.,	
2019)	 illustrated	 how	 AI	 could	 predict	 gene	mutations	 from	 imaging	 data,	 leading	 to	
personalized	treatment	strategies	for	lung	cancer	patients.	AI	also	empowers	clinicians	to	
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personalize	 chemotherapy	 regimens	 by	 predicting	 individual	 patient	 responses	 to	
various	 drugs.	 Algorithms	 analyze	 clinical,	 genomic,	 and	 proteomic	 data	 to	 identify	
optimal	drug	 combinations	 and	dosages,	minimizing	 toxicity	 and	enhancing	 treatment	
outcomes.		

AI	has	been	 instrumental	 in	diagnosing	respiratory	diseases	 like	asthma	(Stokes	et	al.,	
2021),	chronic	obstructive	pulmonary	disease	(COPD)	(Badnjevic	et	al.,	2014,	Bećirović	
et	al.,	2021),	and	lung	cancer.	AI	algorithms	have	demonstrated	accuracy	in	identifying	
malignant	nodules	in	CT	scans	(Ardila	et	al.,	2019).	Moreover,	AI-based	systems	are	being	
employed	to	analyze	pulmonary	function	tests	and	predict	COPD	exacerbations,	offering	
valuable	insights	for	treatment	planning	(Golpe	et	al.,	2022).	Machine	learning	models	are	
instrumental	 in	 predicting	 COPD	 exacerbations,	 enhancing	 preventive	 measures	 and	
treatment	 planning	 (Bećirović	 et	 al.,	 2021).	 Deep	 learning	 algorithms	 analyze	 sputum	
smear	 microscopy	 images	 to	 detect	 Mycobacterium	 tuberculosis	 with	 high	 accuracy	
(Lopes	and	Valiati,	2017).	In	addition	to	medical	imaging	data,	clinical	data	was	used	to	
predict	the	severity	of	COVID-19	clinical	presentation	(Badnjević	et	al.,	2024).		

AI	 has	 been	 prominently	 used	 for	 the	 early	 prediction	 of	metabolic	 disorders	 such	 as	
lactose	intolerance	(Spahic	et	al.,	2020),	Addison	disease	(Džaferović	et	al.,	2022)	and	type	
2	 diabetes	 (Alić	 et	 al.,	 2017).	 Machine	 learning	models	 leverage	 data	 such	 as	 patient	
demographics,	clinical	parameters,	and	lifestyle	factors	to	predict	the	onset	of	diabetes	
(Alic	 et	 al.,	 2017).	 AI	 can	 also	 be	 used	 for	 prediction	 and	management	 of	 gestational	
diabetes,	 a	 type	 of	 diabetes	 that	 affects	 pregnant	 women.	 Machine	 learning	 models	
analyze	prenatal	data,	including	maternal	age,	body	mass	index	(BMI),	family	history,	and	
blood	 glucose	 levels	 to	 predict	 the	 risk	 of	 developing	 gestational	 diabetes,	 enabling	
preventive	measures	(Desai	et	al.,	2024).		

AI	also	plays	a	critical	role	in	drug	discovery,	significantly	reducing	the	time	and	resources	
traditionally	 required.	 Machine	 learning	 algorithms	 predict	 the	 pharmacological	
properties	 of	 various	 compounds,	 identifying	 potential	 new	 drugs.	 Machine	 learning	
models	predict	the	biological	activity	of	numerous	compounds,	facilitating	the	selection	
of	promising	candidates	for	further	development.	Chen	et	al.	(2018)	(Chen	et	al.,	2018)	
discussed	the	role	of	AI	in	analyzing	biological	networks	to	identify	potential	drug	targets	
and	 pathways,	 accelerating	 preclinical	 drug	 development.	 AI	 models	 can	 also	 predict	
potential	drug	targets	and	analyze	complex	biological	data	to	develop	new	therapeutic	
agents,	as	evidenced	in	the	rapid	development	of	treatments	and	vaccines	for	diseases	like	
COVID-19.	AI	is	also	enhancing	clinical	trial	design,	recruitment,	and	execution,	ensuring	
the	expedited	development	and	approval	of	new	drugs.	Machine	learning	models	analyze	
vast	datasets,	including	electronic	health	records	and	real-world	data,	to	identify	optimal	
trial	designs,	predict	patient	responses,	and	monitor	adverse	effects	in	real-time.		

AI	enhances	mental	health	treatment	by	providing	personalized	interventions	and	real-
time	monitoring.	Machine	 learning	models	analyze	patient	data,	 including	speech,	 text,	
and	 behavioral	 patterns,	 to	 identify	 mental	 health	 conditions	 and	 monitor	 treatment	
progress.	 AI-powered	 applications	 and	 chatbots	 provide	 instant,	 personalized	
therapeutic	interventions,	improving	accessibility	and	effectiveness	of	mental	health	care	
(Iniesta	et	al.,	2016).	AI	is	instrumental	in	physical	rehabilitation,	offering	personalized	
treatment	plans	and	real-time	monitoring	of	patient	progress.	AI	algorithms	analyze	data	
from	sensors	and	wearable	devices	to	tailor	rehabilitation	exercises	to	individual	patients’	
needs,	 optimizing	 recovery	 outcomes.	 Machine	 learning	 models	 also	 predict	 patient	
progress	 and	 adapt	 treatment	 plans	 accordingly,	 ensuring	 optimal	 rehabilitation	
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efficiency	 and	 effectiveness	 (Pobiruchin	 et	 al.,	 2017).	 AI	 aids	 in	 personalizing	 pain	
management	strategies,	ensuring	patients	receive	effective	relief	tailored	to	their	specific	
needs.	 Machine	 learning	 algorithms	 analyze	 clinical,	 genomic,	 and	 real-time	 data	 to	
predict	individual	responses	to	various	pain	management	interventions.	AI	applications	
in	 mobile	 health	 technologies	 enable	 real-time	 monitoring	 and	 management	 of	 pain,	
improving	patient	outcomes	and	quality	of	life	(Campion	et	al.,	2016).		

Integration	 of	 AI	 into	 everyday	 healthcare	 practice	 is	 a	 part	 of	 the	 fourth	 industrial	
revolution,	commonly	termed	as	Industry	4.0	(Pokvic	et	al.,	2020).	Developing	computing	
capabilities	and	big	data	processing	are	effectively	used	to	automate	and	expedite	hospital	
and	clinical	processes	thus	ensuring	state	of	the	art	healthcare	for	every	patient	at	any	
time	(Bećirović	et	al.).		
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3.5. State of the art in AI in cardiovascular field 
Figure	 8	 shows	 the	 diverse	 aplications	 of	 artificial	 intelligence	 in	 the	 field	 of	
cardiovascular	medicine.		

	

Figure	8.	Fields	of	application	of	AI	in	cardiovascular	medicine	

AI	has	revolutionized	the	perception	of	early	detection	of	atherosclerosis	by	automating	
image	 analysis	 and	 predicting	 plaque	 progression	 through	 clinical	 data	 integration	
(Föllmer	 et	 al.,	 2024,	 Rogers	 and	 Aikawa,	 2019,	 Wang	 and	 Zhu,	 2024).	 Traditional	
diagnostic	methods	often	rely	on	manual	interpretation	of	medical	images,	which	can	be	
time-consuming	 and	 prone	 to	 subjective	 error.	 In	 contrast,	 AI	 enables	 the	 rapid	 and	
accurate	analysis	of	large	volumes	of	patient	data,	allowing	for	more	precise	identification	
of	 atherosclerotic	 changes	 at	 earlier	 stages,	when	 interventions	 can	be	most	 effective.	
Machine	learning	(ML)	and	deep	learning	(DL)	algorithms	have	demonstrated	remarkable	
capabilities	 in	 processing	 diverse	 and	 complex	 datasets,	 including	 electronic	 health	
records	(EHRs),	medical	imaging,	and	genetic	profiles	(Maragna	et	al.,	2021).	These	data	
sources	collectively	provide	a	multidimensional	view	of	patient	health,	offering	insights	
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that	span	both	clinical	parameters	and	detailed	anatomical	features.	The	integration	of	
these	 diverse	 datasets	 through	 AI	 techniques	 enables	 a	 more	 holistic	 approach	 to	
diagnosing	 and	 predicting	 diseases	 such	 as	 atherosclerosis,	 where	 multiple	 factors	
converge	to	influence	disease	onset	and	progression	(Spahić	et	al.,	2023).	

Medical	Imaging	plays	a	pivotal	role	in	the	assessment	and	diagnosis	of	atherosclerosis,	
particularly	in	visualizing	plaques	within	the	arteries	(Mushenkova	et	al.,	2020).	ML	and	
DL	models,	especially	convolutional	neural	networks	(CNNs),	are	increasingly	applied	to	
process	 large	 volumes	 of	 medical	 images	 such	 as	 coronary	 computed	 tomography	
angiography	 (CCTA),	magnetic	 resonance	 imaging	 (MRI),	 and	 intravascular	ultrasound	
(IVUS)	(Kolossváry	et	al.,	2017,	Lee	et	al.,	2016).	These	imaging	modalities	provide	high-
resolution	images	of	the	arterial	walls,	enabling	the	detection	of	plaques,	calcifications,	
and	 vessel	 stenosis.	 CNNs	 can	 be	 trained	 to	 identify	 and	 classify	 different	 types	 of	
atherosclerotic	 plaques—such	 as	 lipid-rich,	 fibrous,	 or	 calcified—based	 on	 their	
appearance	 in	 these	 images	 (Athanasiou	 et	 al.,	 2014,	 Kunchur	 and	 Mostaço-Guidolin,	
2022,	Kolluru,	2018,	Shibutani	et	al.,	2021).	The	ability	of	CNNs	to	detect	subtle	features	
that	may	be	missed	by	human	observers,	such	as	micro-calcifications	or	minute	changes	
in	 plaque	 composition,	 allows	 for	 earlier	 and	 more	 accurate	 diagnosis	 of	 high-risk	
atherosclerotic	lesions	.	

In	 addition	 to	 detecting	 plaques,	 AI-driven	models	 can	 quantify	 the	 extent	 of	 arterial	
narrowing,	 assess	 the	 stability	of	plaques	 (distinguishing	between	stable	and	unstable	
plaques	that	are	prone	to	rupture),	and	track	changes	in	the	size	or	composition	of	plaques	
over	time	(Föllmer	et	al.,	2024).	By	automating	the	process	of	image	analysis,	AI	reduces	
the	 variability	 that	 arises	 from	 manual	 interpretation	 by	 clinicians,	 ensuring	 more	
consistent	and	reliable	diagnoses.	Moreover,	 integrating	imaging	data	with	clinical	risk	
factors	 from	 EHRs	 allows	 ML	 models	 to	 develop	 more	 robust	 predictions	 of	 disease	
progression,	offering	a	comprehensive	view	of	the	patient’s	cardiovascular	health(Amal	
et	al.,	2022,	Sanchez-Martinez	et	al.,	2022).		

Genetic	 profiles	 add	 yet	 another	 layer	 of	 complexity	 and	 richness	 to	 the	 data	 that	 AI	
models	can	process.	Genetic	factors	play	a	significant	role	in	determining	an	individual’s	
predisposition	 to	 atherosclerosis.	 Genome-wide	 association	 studies	 (GWAS)	 have	
identified	numerous	genetic	variants	associated	with	an	increased	risk	of	atherosclerotic	
cardiovascular	disease	(Holdt	et	al.,	2013).	These	include	variants	in	genes	related	to	lipid	
metabolism	(such	as	LDLR	or	APOB),	inflammation	(e.g.,	IL6),	and	vascular	homeostasis	
(e.g.,	NOS3)	(Butnariu	et	al.,	2022).	By	integrating	genetic	data	with	clinical	and	imaging	
information,	 AI	models	 can	 identify	 genetic	 predispositions	 that,	 in	 combination	with	
lifestyle	 factors,	contribute	to	an	 individual’s	overall	risk	of	developing	atherosclerosis	
(Krittanawong	et	al.,	2022,	Usova	et	al.,	2021).	One	of	the	strengths	of	AI	in	this	domain	is	
its	 ability	 to	 handle	 high-dimensional	 data,	 where	 the	 number	 of	 variables	 (such	 as	
genetic	markers)	far	exceeds	the	number	of	patients.	Traditional	statistical	methods	may	
struggle	 with	 this	 type	 of	 data,	 particularly	 when	 interactions	 between	 genetic	 and	
environmental	 factors	 are	 complex.	 However,	 ML	 algorithms,	 especially	 those	 using	
regularization	techniques,	can	identify	subtle	associations	between	genetic	variants	and	
disease	 outcomes,	 offering	 insights	 into	 how	 specific	 genetic	 profiles	 influence	 the	
development	and	progression	of	atherosclerosis	(Okser	et	al.,	2014).		
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EHRs	 represent	 a	 critical	 source	 of	 clinical	 data	 for	 AI-based	 models,	 encompassing	
detailed	patient	information	such	as	medical	history,	laboratory	results,	medications,	and	
physician	notes.	Within	 the	 context	 of	 atherosclerosis,	 EHRs	hold	 valuable	 insights	 on	
traditional	 cardiovascular	 risk	 factors,	 including	cholesterol	 levels,	blood	pressure,	 the	
presence	of	hypertension,	diabetes,	smoking	status,	body	mass	index	(BMI),	and	family	
history	 of	 cardiovascular	 disease	 	 (Carrasco-Ribelles	 et	 al.,	 2023).	 These	 variables	 are	
essential	for	assessing	an	individual’s	risk	for	developing	atherosclerosis	and	its	related	
complications,	such	as	coronary	artery	disease	or	stroke.	ML	algorithms	can	efficiently	sift	
through	these	massive	datasets,	uncovering	correlations	between	patient	risk	factors	and	
atherosclerosis	development	that	might	not	be	immediately	apparent	through	traditional	
statistical	methods.	For	instance,	algorithms	can	detect	non-linear	relationships	between	
risk	 factors	 or	 interactions	 that	 contribute	 to	 a	 heightened	 risk	 for	 plaque	 formation.	
Moreover,	beyond	risk	factor	stratification,	EHRs	also	provide	longitudinal	data,	allowing	
for	tracking	patient	health	over	time.	By	analyzing	trends	in	laboratory	results	or	changes	
in	medication	regimens,	ML	models	can	predict	future	cardiovascular	events	or	plaque	
progression	 with	 a	 high	 degree	 of	 accuracy.	 This	 longitudinal	 aspect	 of	 EHRs	 is	
particularly	 useful	 for	 developing	 personalized	 treatment	 plans,	 as	 the	 AI	models	 can	
adjust	 risk	 estimates	 based	 on	 new	 clinical	 data,	 leading	 to	 more	 dynamic	 and	
individualized	patient	care	(Carrasco-Ribelles	et	al.,	2023).	When	these	data	sources—
EHRs,	 imaging,	 and	 genetics—are	 combined,	 ML	 and	 DL	 algorithms	 can	 offer	
unprecedented	insights	into	atherosclerosis	risk	stratification.	These	models	can	not	only	
predict	the	likelihood	of	plaque	formation	but	also	forecast	its	progression	and	potential	
complications,	 helping	 clinicians	 tailor	 preventative	 and	 therapeutic	 strategies	 to	 the	
needs	of	each	patient		(Seckanovic	et	al.,	2020).	Moreover,	these	AI	systems	can	adapt	as	
more	data	is	collected,	continuously	refining	predictions	and	treatment	recommendations	
in	real-time,	thus	leading	to	more	dynamic	and	personalized	care.	

AI	is	very	useful	in	predicting	heart	failure	using	electronic	health	records	and	real-time	
cardiac	monitoring	data.	Machine	learning	algorithms	can	analyze	vast	datasets,	including	
clinical,	 laboratory,	 and	 imaging	 data,	 to	 identify	 early	 signs	 of	 heart	 failure,	 enabling	
proactive	management	(Futoma	et	al.,	2017;	Spahic	et	al.,	2023;	Seckanovic	et	al.,	2020).	
A	study	by	Weng	et	al.	(2017)	employed	machine	learning	algorithms	to	predict	the	risk	
of	 cardiovascular	disease.	The	 study	utilized	electronic	health	data,	 including	age,	 sex,	
ethnicity,	and	medication,	and	found	that	machine	learning	models	were	more	accurate	
in	predicting	cardiovascular	events	compared	to	traditional	statistical	models.	AI	models,	
especially	deep	learning,	are	employed	in	the	real-time	detection	of	atrial	fibrillation,	a	
common	cardiac	arrhythmia.	By	analyzing	electrocardiogram	(ECG)	data,	AI	was	proven	
to	 be	 effective	 in	 identification	 of	 patterns	 indicative	 of	 atrial	 fibrillation	 with	 high	
accuracy,	 aiding	 in	 timely	 diagnosis	 and	 treatment	 (Hannun	 et	 al.,	 2019).	 Machine	
learning	models	can	also	effectively	analyze	coronary	computed	tomography	angiography	
(CCTA)	images	to	detect	and	quantify	coronary	plaque,	thus	aiding	in	risk	stratification	
and	treatment	planning	in	the	realm	of	coronary	artery	diseases	(Spahic	et	al.,	2023;	Zreik	
et	al.,	2018).	Another	application	of	AI	in	the	field	of	cardiology	are	ML	technologies	are	
employed	 for	 the	 prediction,	 classification,	 and	 outcome	 prediction	 of	 stroke.	 They	
analyze	clinical	data,	 imaging,	and	genetic	 information	 to	classify	 stroke	 types,	predict	
occurrences,	and	project	recovery	outcomes,	significantly	enhancing	patient	care	(Hrvat	
et	al.,	2023;	Monteiro	et	al.,	2020).	 	
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4. Experimental research of atherosclerotic plaque 
progression 

4.1. Agent Based Modeling  
The	dataset	used	 for	development	of	agent	based	models	 in	 this	PhD	 thesis	originates	
from	imaging	of	carotid	arteries	with	bifurcation.	The	initially	idealized	peripheral	artery	
geometry	dataset	was	unavailable	due	to	experimental	drawbacks.	In	order	to	ensure	the	
reliability	of	the	results,	a	more	complex	geometry	of	an	artery	with	bifurcation	was	used	
to	 conduct	 the	 in	 silico	 experiments.	 The	 dataset	 consisted	 of	 15	 patient-specific	
geometries	obtained	by	means	of	reconstruction	from	MRI.	The	initial	geometries	were	
incorporated	into	input	files	suitable	for	finite	element	analysis	using	PAK	software	via	a	
data	 converter	 designed	 specifically	 for	 this	 purpose.	 The	 initial	 .dat	 files	 contained	
default	set	parameters	for	simulation.	
	
The	methodology	for	the	agent	based	model	adopted	in	this	work,	based	on	Corti	et	al.	
(2020),	involves	four	iterative	steps:	1)	geometry	preparation,	2)	CFD	simulation,	3)	ABM	
simulation,	and	4)	new	3D	geometry	generation.	Firstly,	a	3D	model	of	a	healthy	artery	is	
built,	followed	by	generation	of	a	fluid	domain	mesh	using	PAK	software.	A	CFD	simulation	
is	then	performed	in	PAK	to	compute	hemodynamics	and	extract	Wall	Shear	Stress	(WSS)	
values	 at	 the	 lumen	 interface	 across	 2D	 vessel	 cross-sections.	 For	 each	 cross-section,	
hemodynamic-driven	 remodeling	 is	 simulated	 using	 an	 ABM	 that	 models	 cellular,	
extracellular,	and	lipid	dynamics.	The	CFD	simulation	is	responsible	for	calculating	WSS	
values,	while	the	ABM	handles	the	remodeling	of	the	arterial	wall.	

	
Figure	9.	ABM	methodology	
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Figure	9	outlines	the	workflow	of	the	proposed	framework.	For	each	2D	cross-section,	
geometry	changes	resulting	from	the	ABM	are	transferred	to	the	fluid	domain,	causing	a	
recalculation	of	blood	flow	and	WSS	values,	which	are	then	used	to	update	the	ABM	in	the	
next	step.	This	coupling	ensures	that	the	WSS	distribution	is	continuously	updated	as	the	
geometry	of	the	artery	evolves.	By	simulating	cell	mitosis,	ECM	degradation	and	productin	
and	 lipid	 infiltration	 in	 the	 intima,	 the	ABM	replicats	arterial	wall	 remodeling.	Various	
vessel	structures	and	compositions,	along	with	new	cellular	events,	were	 incorporated	
into	the	model.	The	ABM	used	in	this	study	was	methodologically	developed	by	Corti	et	
al.	(2020)	and	validated	under	atherogenic	conditions.	The	coupling	between	the	CFD	and	
ABM	modules	begins	by	initializing	the	ABM	with	hemodynamic	input.		
	
WSS	values	were	derived	from	3D	CFD	simulation	and	eq.4	represents	the	calculation	of	
endothelial	dysfunction	level	𝐷$ 	while	𝑊𝑆𝑆$ 	represents	𝑊𝑆𝑆	at	site	𝑖	and	𝑊𝑆𝑆%=	1Pa	the	
𝑊𝑆𝑆	threshold.	

𝐷(𝑊𝑆𝑆)$ = 𝐷$ = 61	 −
&''!

&''"
, 	𝑖𝑓	𝑊𝑆𝑆$ < 𝑊𝑆𝑆%

0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	.	 Eq.	4		

𝑊𝑆𝑆%	was	determined	based	on	 the	work	of	Samady	et	al.,(Samady	et	al.,	2011).	Each	
dysfunctional	endothelial	site	 𝑖,	with	𝐷$ ≠ 0	,	 starting	a	state	of	alteration	that	diffuses	
within	the	intima	through	isotropic	diffusion,	from	a	peak	of	intensity	𝐷$ 	with	a	diffusion	
constant	 𝜑. 		𝐴$,)I𝐷$ , 𝑑J	 represents	 the	 alteration	 level	 recorded	 at	 the	 𝑘-th	 site	 and	
produced	by	the	𝑖-th	endothelial	site	within	intima,	at	a	distance	𝑑	from	𝑖	(eq.5).	

𝐴$,)I𝐷$ , 𝑑J = 𝐴$,) = 𝐷$ ∗ 𝑒*
+
,-

!
./01

#

	.	 Eq.	5	

The	 global	 inflammation	 level	 of	 the	𝑘-th	 site	 𝐼) 	 is	 calculated	 as	 a	 sum	 of	 	 individual	
alteration	states	for	each	site	𝑘	as	shown	in	eq.6.	

𝐼) =N𝐴$,) 		
2$

$3+

.	 Eq.	6	

Where:		

-𝑁4	is	the	initial	number	of	sites	of	the	lumen	wall		

-	resulting	𝐼) 	that	affects	the	agent	dynamics	

WSS	profile	was	defined	as	atherogenic	when	all	the	𝑊𝑆𝑆	values	at	the	𝑖-th	sites	are	larger	
than	 the	 designated	 threshold,	 𝐷$ = 0	∀𝑖	and	 𝐼) = 0	 everywhere	 or	 if	 a	 state	 of	
inflammation	𝐼	develops	and	the	mechanisms	of	plaque	formation	are	activated	(	𝑊𝑆𝑆$ <
𝑊𝑆𝑆5)	

The	physiological	conditions	were	replicated	by	setting	baseline	probability	densities	for	
cell	mitosis/apoptosis	and	ECM	deposition/degradation	rates	as	defined	with	Eq.7	and	
Eq.8,	respectively:	

𝑝6$0 = 𝑝78%8 = 𝛼+	,	 Eq.7	
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𝑝89%! = 𝛽 ∗ 𝑝!:; = 𝛼.	,	 Eq.8	

where	𝛼+,	𝛼.	and	𝛽	are	involved	in	maintaining	the	physiological	cell/ECM	ratio	defined	
for	each	tissue	layer	during	initialization.	(Garbey	et	al.,	2017).			

Coefficient	𝛽	for	the	intima,	media	and	adventitia	layers	were	set	in	accordance	to		Garbey	
et	al.	(Garbey	et	al.,	2017	)	to	guarantee	stable	trends	of	ECM	in	each	layer	under	baseline	
conditions.	 Eq.7	 and	 Eq.	 8	 thereby	 trigger	 arterial	 wall	 remodelling,	 leading	 to	 the	
replication	of	healthy	artery	homeostasis.	Inflammation	level	consequently	increases	the	
probability	of	cell	mitosis	and	ECM	production	in	the	intima	causing	an	increase	in	the	
number	of	neighboring	lipids	and	the	closeness	to	the	lumen	(Doran	et	al.,	2008),	leading	
to	the	following:	

𝑝6$0 = T
𝛼+ ∙ (1 + 𝛼,𝐼))	𝑖𝑓	𝑛<$8 = 0	

𝛼+ ∙ (1 + 𝛼,𝐼))I1 + 𝛼=𝑛<$8JW1 + expI−𝑑<"6:>) J[	𝑖𝑓	𝑛<$8 ≠ 0
			,	

	

Eq.9	

𝑝89%! = T
𝛼. ∙ (1 + 𝛼,𝐼))	𝑖𝑓	𝑛<$8 = 0	

𝛼. ∙ (1 + 𝛼,𝐼))I1 + 𝛼=𝑛<$8JW1 + expI−𝑑<"6:>) J[	𝑖𝑓	𝑛<$8 ≠ 0
		,	

	

Eq.10	

where	𝛼,	and	𝛼=	weight	the	effect	of	the	inflammation	state	𝐼) 	and	the	influence	of	the	
neighboring	lipids	𝑛<$8,	while	𝑑<"6:>) 	is	the	distance	between	the	site	𝑘	and	the	lumen	wall.	
The	coefficients	were	set	 following	the	 framework	proposed	by	Corti	et	al.(Corti	et	al.,	
2020a).	

Once	the	intima	thickens	over	a	given	threshold	(Bentzon	et	al.,	2014),	lipid	dynamics	is	
activated	and	lipid	infiltration	is	calculated	as	the	probability	of	a	site	k	expressed	by:	

𝑝<$8$! = 𝛼?(1 + 𝐼))W1 + 𝛼@ ∙ expI−𝑑<$8) J[ \1 +
𝑛<$8
𝛼A
]	,	 Eq.11	

where	𝛼?	sets	the	event	probability	in	the	interval	(0,	1).	Lipid	clustering	is	promoted	by	
increasing	 the	 probability	 of	 a	 lipid	 to	 occupy	 a	 site	 𝑘	 close	 to	 another	 lipid,	 whose	
distance	is	𝑑<$8) 	as	defined	in	terms	𝛼@ ∙ exp	I−𝑑<$8) J	and	^1 + >%!&

B'
_.	Only	a	single	lipid	can	

enter	the	intima	at	an	individual	time	step.	The	terms	and	coefficients	of	Eq.	11	are	set	so	
to	mimic	a	lipid	nucleus	(Otsuka	et	al.,	2013).		Once	the	lipids	enter	the	intima	layer,	the	
lipid	 agents	 have	 to	 maintain	 their	 position	 throughout	 the	 entire	 simulation.	
Maintenance	 of	 the	 lipid	 core	 is	 ensured	 by	 defining	 that	 the	 agent	 movement	 is	
performed	 along	 the	 shortest	 path	 that	 does	not	 include	 the	 lipid	 agents.	 	 In	 order	 to	
provide	structural	integrity	and	fidelity	of	the	simulation	the	agent	movement	complies	
with	the	minimum	energy	principle	at	all	times	except	in	the	case	when	the	lipid	agents	
are	positioned	along	the	shortest	path.	Figure 10. Tissue reorganization when K produces 
an element or is removed in b) the intima, c) media and d) adventitia.Figure	10	provides	
a	schematic	 representation	of	 the	arterial	wall	 (Fig.	10a),	an	example	of	generation	or	
disposal	 of	 an	 agent	 in	 the	 intima	 layer	 (Fig.	 10b),	 the	media	 layer	 (Fig.	 10c)	 and	 the	
adventitia	layer	(Fig.	10d).	
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Figure	10.	Tissue	reorganization	when	K	produces	an	element	or	is	removed	in	b)	the	

intima,	c)	media	and	d)	adventitia.	

A	 distinct	 3D	 geometry	 of	 the	 vessel	 lumen	 is	 constructed,	 and	 the	 initial	 ABM	
configuration	for	each	plane	in	the	subsequent	cycle	is	determined.	For	each	ABM	solution	
at	a	specific	cross-section	(M),	the	lumen	and	external	radii,	along	with	plaque	thickness,	
are	calculated	and	represented	as:	𝑅C$(𝜗),	with	𝑗	 = 	1,2,3,	respectively.	The	corresponding	
deviation,	∆$ ,	from	the	average	configuration,	𝑅D(𝜗)eeeeeee	was	computed	as	defined	in	Eq.	12,	
and	the	ABM	𝑖-th	output	minimizing	𝛥	was	selected:	

∆$=Ng 𝑤ChI𝑅C$(𝜗) − 𝑅D(𝜗)eeeeeeeJ,𝑑𝜗
,E

5

=

C3+

		,	 Eq.12	

where	each	𝑗-th	quantity	is	weighed	by	𝑤C .	The	same	criterion	was	applied	for	all	cross-
sections	and	the	3D	geometry	was	finally	reconstructed.		

	

Coupling	FE	computational	fluid	dynamics	with	ABM	
Blood	flow	dynamics	can	be	effectively	modelled	using	continuum	methods	like	the	Finite	
Element	Method	(FEM).	By	numerically	solving	the	Navier-Stokes	equations,	it	is	possible	
to	obtain	velocity	and	pressure	fields,	as	well	as	the	distribution	of	shear	stresses	along	
the	vessel	wall.	Recent	studies	have	demonstrated	that	hemodynamic	parameters	play	a	
crucial	role	in	the	development	of	atherosclerosis,	with	Wall	Shear	Stress	being	one	of	the	
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key	 factors.	WSS	 influences	 the	 transport	of	LDL	 from	the	bloodstream	 into	 the	vessel	
wall,	thereby	impacting	the	progression	of	atherosclerosis.	

Atherosclerosis	 progresses	 through	 intricate	 molecular	 interactions	 within	 the	 vessel	
wall,	governed	by	distinct	rules	and	involving	various	cellular	and	molecular	components.	
The	process	initiates	when	LDL	particles	penetrate	the	vessel	wall,	linking	the	molecular	
dynamics	of	atherosclerosis	to	the	hemodynamic	characteristics	of	blood	flow.	To	address	
the	 interplay	between	macroscopic	blood	flow	and	microscopic	disease	mechanisms,	a	
hybrid	model	 integrating	FEM	and	an	ABM	was	established.	The	ABM	parameters	 are	
drawn	 from	 references	 outlined	 in	 the	 theoretical	 background	 section,	while	 the	 LDL	
entry	rate	into	the	domain	varies	and	is	derived	from	FEM	outputs.	The	distribution	of	
axial	 LDL	 flux	 along	 the	 vessel	 is	 projected	 onto	 the	 ABM’s	 horizontal	 axis,	 with	 LDL	
source	locations	evenly	spaced	along	this	axis.	The	entry	rate	at	each	source	is	scaled	to	
the	LDL	flux	at	the	corresponding	FEM	coordinate,	while	the	vertical	positioning	of	these	
sources	 is	 randomized.	 This	 setup	 provides	 the	 boundary	 conditions	 for	 simulating	
atherosclerosis	progression	using	the	ABM.	Figures	presented	in	a	comparative	manner	
in	Tables	1-13	show	the	changes	in	the	geometry	of	the	artery	due	to	remodelling	driven	
by	 agent-based	modelling	 coupled	with	 blood	 flow.	 The	 results	 are	 presented	 for	 the	
variables	wall	shear	stress,	velocities	and	the	ABM	modulus.		
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Table	1.		ABM	results	for	patient	specific	geometry	1	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	2.	ABM	results	for	patient	specific	geometry	2	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	

	 	



44 
 

Table	3.	ABM	results	for	patient	specific	geometry	2	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	4.	ABM	results	for	patient	specific	geometry	4	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	5.	ABM	results	for	patient	specific	geometry	2	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	6.	ABM	results	for	patient	specific	geometry	6	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	7.	ABM	results	for	patient	specific	geometry	7	
Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	8.	ABM	results	for	patient	specific	geometry	8	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	9.	ABM	results	for	patient	specific	geometry	9	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	10.	ABM	results	for	patient	specific	geometry	10	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	11.	ABM	results	for	patient	specific	geometry	11	
Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	12.	ABM	results	for	patient	specific	geometry	12	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	
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Table	13.	ABM	results	for	patient	specific	geometry	13	

Time	step	1	 Time	step	15	

	 	
Wall	shear	stress	(WSS)	

	 	
Velocities	

	 	
Agent	based	model	(ABM)	

	
As	the	initial	parameters	were	homogenous	accross	all	simulations,	the	changes	in	plaque	
progression	 are	 only	 due	 to	 initial	 differences	 in	 plaque	 content	 and	 structure	
accompaniead	 by	 vessel	 geometry.	 The	 model	 was	 validated	 with	 patient	 follow-up	
results	and	indicated	fidelity.		
	

4.2. ABM Parameter Sensitivity Analysis 
Parameter	sensitivity	analysis	(PSA)	is	a	quantitative	method	used	to	determine	how	the	
variation	 in	 input	 parameters	 of	 a	 model	 affects	 its	 output.	 It	 helps	 identify	 which	
parameters	have	the	most	significant	impact	on	the	model’s	predictions,	thus	providing	
insights	 into	 the	model’s	 robustness	 and	 reliability.	 This	 analysis	 is	 crucial	 in	 various	
fields,	 including	engineering,	economics,	environmental	science,	and	healthcare,	where	
models	are	used	to	simulate	complex	systems	and	make	predictions.	
The	importance	of	PSA	lies	in:	

• Model	 validation:	 By	 understanding	 which	 parameters	 significantly	 influence	
model	outputs,	researchers	can	validate	their	models	more	effectively,	ensuring	
that	they	are	accurately	representing	the	underlying	processes.	
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• Uncertainty	quantification:	PSA	helps	quantify	uncertainties	in	model	predictions	
resulting	from	uncertainties	in	input	parameters.	This	understanding	is	vital	for	
making	informed	decisions	based	on	model	outputs.	

• Optimization:	 Identifying	 critical	 parameters	 allows	 for	 targeted	 optimization	
efforts,	which	can	enhance	the	model’s	performance	while	reducing	computational	
costs.	

• Decision-making	 support:	 In	 fields	 like	 healthcare	 and	 environmental	
management,	understanding	parameter	sensitivities	can	 inform	better	decision-
making	by	highlighting	key	factors	that	influence	outcomes.	

• Guiding	 experimental	 design:	 Insights	 gained	 from	 sensitivity	 analysis	 can	help	
guide	experimental	design,	focusing	resources	on	the	most	influential	parameters.	

There	are	various	methods	for	performing	parameter	sensitivity	analysis,	each	suited	for	
different	types	of	models	and	applications.	Different	types	of	sensitivity	analysis	are:		

• Local	sensitivity	analysis	
• Global	sensitivity	analysis	
• Screening	methods	
• Regression-based	sensitivity	analysis	

Local	sensitivity	analysis	which	examines	how	small	changes	in	input	parameters	affect	
the	output	around	a	nominal	point	(usually	the	mean	or	expected	value).	It	uses	the	first	
derivative	 (gradient)	 of	 the	 output	 with	 respect	 to	 the	 input	 parameters.	 It	 typically	
involves	perturbing	each	parameter	slightly	while	keeping	others	constant	and	observing	
the	change	in	output.	
Global	 sensitivity	analysis	assesses	 the	 influence	of	 input	parameters	over	 their	entire	
range	 of	 possible	 values.	 It	 considers	 the	 joint	 variability	 of	 all	 parameters	 and	 their	
interactions.	Methods	of	global	sensitivity	analysis	include:	

• Variance-based	methods,	such	as	Sobol’	indices,	which	decompose	the	variance	of	
the	output	into	contributions	from	individual	parameters	and	their	interactions.	

• Fourier	Amplitude	Sensitivity	Test	 (FAST)	 that	 transforms	 the	parameter	space	
into	a	Fourier	series	to	quantify	sensitivities.	

• Monte	 Carlo	 Simulations	 randomly	 sample	 input	 parameters	 from	 their	
probability	distributions	to	observe	the	resulting	output	variability.	

Screening	methods	are	used	as	PSA	when	the	number	of	parameters	is	large,	and	the	goal	
is	 to	 identify	 the	 most	 influential	 parameters	 quickly.	 These	 methods	 can	 filter	 out	
insignificant	 parameters	 before	 conducting	 a	 more	 detailed	 analysis.	 Methods	 of	
screening	can	be:	

• One-at-a-Time	(OAT)	Testing	that	systematically	varies	one	parameter	at	a	time	
while	holding	others	constant.	

• FAST	 and	 Morris	 methods	 that	 efficient	 techniques	 to	 identify	 sensitive	
parameters	in	a	reduced	number	of	model	runs.	

Regression-based	 sensitivity	analysis	 involves	 fitting	a	 regression	model	 to	 the	output	
data,	 with	 input	 parameters	 as	 predictors.	 The	 coefficients	 of	 the	 regression	 model	
indicate	the	sensitivity	of	the	output	to	changes	in	each	parameter.	
A	comparison	of	advantages	and	limitations	of	different	sensitivity	analysis	methods	is	
given	in	Table	14.		
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Table	14.	Comparison	of	different	sensitivity	analysis	methods	

	 Advantage	 Limitation	
Local	sensitivity	analysis	 Simple	 and	

computationally	 efficient	
for	linear	models	
	

It	 assumes	 linearity	 and	
may	not	 capture	nonlinear	
effects	 or	 interactions	
between	parameters.	

Global	sensitivity	analysis	 Provides	 a	 comprehensive	
view	 of	 parameter	 effects	
and	captures	nonlinearities	
and	interactions.	

More	 computationally	
intensive	 and	 requires	 a	
larger	 number	 of	 model	
evaluations.	

Screening	methods	 Efficient	 and	 can	
significantly	 reduce	
computational	effort.	

May	 miss	 interactions	
between	parameters.	

Regression-based	
sensitivity	analysis	

Useful	 for	 linear	 models	
and	 provides	 a	
straightforward	
interpretation	 of	
sensitivities.	

Limited	 to	 linear	
relationships	 and	 may	 not	
capture	 complexities	 in	
more	intricate	models.	

	
Latin	Hypercube	Sampling	(LHS)	is	a	powerful	statistical	technique	widely	used	in	PSA	
and	Monte	Carlo	simulations.	 It	serves	as	a	robust	method	for	efficiently	exploring	the	
input	parameter	space	of	a	model,	generating	a	set	of	samples	that	accurately	represent	
potential	 outcomes.	 Understanding	 LHS	 involves	 diving	 into	 its	 unique	 approach,	
advantages,	and	applications	in	sensitivity	analysis.	At	its	core,	LHS	is	a	stratified	sampling	
method	that	ensures	each	parameter	is	uniformly	sampled	across	its	entire	range.	Unlike	
traditional	 random	 sampling,	 where	 each	 parameter	 is	 treated	 independently,	 LHS	
divides	the	range	of	each	parameter	into	equally	probable	intervals,	also	known	as	strata.		
The	design	of	LHS	is	systematic	and	intuitive.	To	start,	each	input	parameter	is	broken	
down	into	N	equal	intervals,	with	N	representing	the	total	number	of	desired	samples.	For	
every	parameter,	one	value	is	randomly	selected	from	each	of	these	intervals,	and	these	
selected	values	are	then	combined	to	create	a	complete	set	of	input	parameters	for	the	
model.	This	approach	guarantees	that	all	combinations	of	parameter	values	are	covered,	
resulting	in	a	more	efficient	exploration	of	the	parameter	space.	
The	advantages	of	using	LHS	in	PSA	are	firstly	that	it	enhances	efficiency	by	providing	a	
more	accurate	representation	of	the	input	space	with	fewer	samples	compared	to	simple	
random	sampling.	This	characteristic	is	particularly	valuable	when	working	with	complex	
models	that	demand	significant	computational	resources	for	evaluation.	By	ensuring	that	
each	parameter’s	range	is	uniformly	sampled,	LHS	avoids	clustering	in	specific	regions,	
allowing	for	better	coverage	of	the	overall	parameter	space.	Moreover,	LHS	contributes	
to	reducing	the	variance	of	output	estimates,	as	it	effectively	captures	the	entire	range	of	
each	 parameter.	 Implementing	 LHS	 is	 also	 straightforward,	 making	 it	 accessible	 for	
researchers	across	various	fields.	
LHS	finds	its	applications	in	numerous	areas	of	sensitivity	analysis.	In	exploratory	studies,	
for	 example,	 it	 plays	 a	 crucial	 role	 in	 identifying	 which	 parameters	 exert	 the	 most	
significant	influence	on	model	outputs.	In	fields	such	as	environmental	modeling,	finance,	
and	 engineering,	 LHS	 helps	 quantify	 uncertainties	 by	 sampling	 input	 parameters	 and	
assessing	their	impact	on	variability	in	the	results.	It	also	supports	model	calibration	and	
validation	 by	 efficiently	 exploring	 the	 parameter	 space	 to	 identify	 optimal	 values	 and	
validate	predictions.	
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Implementing	LHS	 in	parameter	 sensitivity	 analysis	 follows	 a	 clear	 sequence	of	 steps.	
Initially,	the	parameters	to	be	analyzed	are	determined	and	their	corresponding	ranges	
or	probability	distributions	determined.	Next,		the	number	of	samples	to	be	generated	for	
the	analysis	is	determined.	Each	parameter’s	range	is	then	stratified	into	equal	intervals	
based	on	the	sample	size.	Once	this	 is	done,	one	value	 is	randomly	selected	 from	each	
interval	 for	 each	 parameter,	 ensuring	 all	 intervals	 are	 represented.	 The	 samples	 are	
combined	 to	 create	 a	 comprehensive	 set	 of	 input	 parameter	 combinations,	which	 are	
subsequently	 used	 to	 run	 the	 model.	 Finally,	 the	 output	 data	 is	 analyzed	 to	 identify	
influential	 parameters	 and	 their	 effects.	 The	 methodology	 of	 LHS-based	 sensitivity	
analysis	conducted	in	this	research	is	show	in	Figure	11.	
	

	
Figure	11.	Workflow	of	LHS	PSA	

	
The	intrinsic	ABM	parameters	driving	the	simulation	were	initially	defined	by	Garbey	et	
al.,(Garbey	et	al.,	2017)	and	the	constant	parameters	that	drive	cellular	events	are:		

- Probability	of	mitosis	and	apoptosis	
- Smooth	muscle	cell	(SMC)	division	in	the	intimal	layer	
- Extracellular	matrix	(ECM)	deposition	in	intimal	layer	
- ECM	deposition	in	medial	layer	
- SMC	division	in	medial	layer	
- Outward	remodeling	driven	by	shear	forces	
- Outward	remodeling	driven	by	tensile	forces	

All	of	the	aforementioned	parameters	have	been	defined	in	literature	and	their	respective	
physiological	ranges	determined	(Table	15).	
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Table	15.	ABM	parameters	and	ranges	

Parameter	
name	

Parameter	description	 Parameter	
type	

Range	 Default	
value	

α1	 Probability	 of	mitosis	 and	
apoptosis	

constant	 0.05	 0.05	

α2	 Probability	 of	 SMC	
proliferation	 in	 tunica	
media	

variable	 2-17	 1.5	

α3	 Probability	 of	 SMC	
proliferation	in	intima		

variable	 0-0.5	 0.1	

α4	 Probability	 of	 ECM	
degradation	

constant	 0.008	 0.008	

α5	 Probability	 of	 lipid	
infiltration		

variable	 0-0.106	 0.005	

α6	 Outward	 remodeling	
driven	by	shear	forces	

Variable	 0-24.46	 10.0	

α7	 Outward	 remodeling	
driven	by	tensile	forces	

Variable	 1.84-100	 6.0	

	

Parameter	sensitivity	analysis	results	
Multi-parametric	sensitivity	analysis	was	conducted	using	LHS	to	randomly	sample	the	
triangular	probability	density	function	of	each	parameter	and	define	the	parameter	set	
for	the	ABM	simulations.	This	method	allowed	for	the	exploratory	testing	of	the	entire	
range	of	each	parameter	and	is	proven	to	achieve	good	accuracy	with	a	limited	number	of	
simulations.	The	probability	density	 functions	of	all	parameters	were	divided	 into	100	
equal	 probability	 intervals	 and	 an	 LHS	 matrix	 was	 generated	 identifying	 100	 ABM	
parameter	combinations.	To	account	for	the	influence	of	these	parameters	on	different	
initial	 patient-specific	 geometries,	 100	 simulations	 with	 different	 patient-specific	
geometries	were	conducted	for	13	distinct	cases.		

The	 results	 of	 PSA	 were	 first	 analyzed	 graphically	 in	 the	 domain	 of	 ABM	 simulation	
results.	Results	of	 example	 simulations	are	presented	 in	Figures	12-18	and	parameter	
comparisons	are	given	in	tables	16-22.	 	
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Instance	1	
	

Figure	12.a	ABM	results	with	default	parameters		

Figure	12.b	ABM	results	with	LHS	generated	parameters	(Table	16.)		

Figure	12.	Graphical	result	difference	for	LHS	on	sample	geometry	3	

As	it	can	be	seen	from	Figure	12,	even	a	slight	increase	in	α5	causes	significant	progression	
of	atherosclerosis.	The	progression	of	atherosclerosis	in	this	case	seems	irregular	as	the	
process	 is	 directed	 towards	 the	 arterial	 lumen,	 indicating	 that	 the	 ABM	 could	 be	
oversensitive	to	changes	made	to	α5.	
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Table	16.	Parameter	comparison	LHS	(geometry	2)	

Parameter	 Default	simulation	parameters	 LHS	 generated	
simulation	
parameters	

Parameter	status	

α1	 0.05	 0.05	 Const	
α2	 1.5	 1.5	 Const	
α3	 0.1	 0.1	 Const	
α4	 0.008	 0.008	 Const.	
α5	 0.005	 0.009	 >	
α6	 10.0	 10.0	 Const	
α7	 6.0	 6.0	 Const	
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Instance	2	

Figure	13.a	ABM	results	with	default	parameters		

Figure	13.b	ABM	results	with	LHS	generated	parameters	(Table	17)		

Figure	13.	Graphical	result	difference	for	LHS	on	sample	geometry	3	

In	this	instance,	the	LHS	parameters	intorduced	an	increase	in	α2,	α3,	α5	and	α7	along	with	
a	decrease	 in	α6.	Even	though	the	parameter	driving	the	arterial	wall	remodelling	was	
decreased	the	contribution	of	the	increase	in	other	parameters	resulted	in	a	significantly	
increased	 plaque	 progression.	 Additionally,	 the	 plaque	 progression	 in	 this	 case	 is	
irregular	as	it	is	modeled	as	a	migration	of	the	atherosclerotic	plaque	towards	the	arterial	
lumen.	Even	though	this	can	be	interpreted	as	the	breakage	of	the	plaque	and	thrombus	
formation,	a	significant	increase	in	the	parameter	driving	outward	remodelling	by	tensile	
forces	could	be	a	potential	disruptor	of	the	simulation.	
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Table	17.	Parameter	comparison	LHS	(geometry	3)	

Parameter	 Default	simulation	parameters	 LHS	 generated	
simulation	
parameters	

Parameter	status	

α1	 0.05	 0.05	 Const	
α2	 1.5	 15.3	 >	
α3	 0.1	 0.35	 >	
α4	 0.008	 0.008	 Const.	
α5	 0.005	 0.062	 >	
α6	 10.0	 3.9	 <	
α7	 6.0	 77.0	 >	
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Instance	3	

Figure	14.a	ABM	results	with	default	parameters		

Figure	14.b	ABM	results	with	LHS	generated	parameters	(Table	18.)		
	

Figure	14.	Graphical	result	difference	for	LHS	on	sample	geometry	4	

Taking	 into	account	 the	 fact	 that	 all	 variable	 simulation	parameters	were	 significantly	
increased,	an	the	only	change	to	the	atherosclerotic	plaque	progression	was	in	the	field	of	
transitioning	from	fibrous	to	calcified	plaque,	it	can	be	said	that	the	ABM	deals	well	with	
pertrubations	 in	 simulation	 parameters.	 Contrary	 to	 the	 results	 from	 patient-specific	
geometries	 2	 and	 3	 where	 even	 slight	 changes	 in	 the	 parameters	 caused	 a	 significan	
pertrubation	in	the	simulation,	the	fidelity	of	results	was	kept	constant	in	this	case.	This	
leads	to	a	deduction	that	the	simulation	results	are	much	more	sensitive	to	the	geometry	
itself	than	to	the	parameter	pertrubations.	If	the	regularity	of	the	arterial	wall	and	lumen	
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is	compared	betwee	these	three	instances,	it	is	clearly	visible	that	geometries	2	and	3	are	
much	more	irregular	in	terms	of	kinks	and	narrowings	of	the	vessel	than	geometry	4.	

Table	18.	Parameter	comparison	LHS	(geometry	4)	

Parameter	 Default	simulation	parameters	 LHS	 generated	
simulation	
parameters	

Parameter	status	

α1	 0.05	 0.05	 Const	
α2	 1.5	 4.002	 >	
α3	 0.1	 0.243	 >	
α4	 0.008	 0.008	 Const.	
α5	 0.005	 0.017	 >	
α6	 10.0	 21.296	 >	
α7	 6.0	 76.77	 >	
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Instance	4	

Figure	15.	Graphical	result	difference	for	LHS	on	sample	geometry	5.a	ABM	results	
with	default	parameters		

Figure	15.b	ABM	results	with	LHS	generated	parameters	(Table	20.)		
	

Figure	15.	Graphical	result	difference	for	LHS	on	sample	geometry	5	

In	the	context	of	geometry	5,	a	significant	increase	in	plaque	burden	is	observed	with		both	
transition	of	the	initial	fibrous	plaque	to	calcified	and	progression	along	the	vessel	wall.	
This	was	 caused	 by	 an	 increase	 in	 all	 parameters	 driving	 atherosclerotic	 progression	
except	for	α3.	The	fidelity	of	the	simulation	results	was	once	again	preserved	regardless	
of	significant	changes	made	to	the	simulation	parameters.		
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Table	19.	Parameter	comparison	LHS	(geometry	5)	

Parameter	 Default	 simulation	
parameters	

LHS	generated	simulation	
parameters	

Parameter	status	

α1	 0.05	 0.05	 Const	
α2	 1.5	 6.1	 >	
α3	 0.1	 0.05	 <	
α4	 0.008	 0.008	 Const.	
α5	 0.005	 0.075	 >	
α6	 10.0	 12.0	 >	
α7	 6.0	 74.0	 >	
	 	



67 
 

	
	

Instance	5	

Figure	16.a	ABM	results	with	default	parameters		

Figure	16.b	ABM	results	with	LHS	generated	parameters	(Table	20.)		

Figure	16.	Graphical	result	difference	for	LHS	on	sample	geometry	5	

The	simulation	fidelity	was	significantly	distorted	in	the	case	of	sample	geometry	5	where	
the	simulation	results	suggest	„leakage“	of	the	plaque	content	into	the	bloodstream,	an	
occasion	that	does	not	happen	in	physiological	scenarios.	Taking	into	account	the	changes	
made	to	the	parameters	and	the	fact	that	α7	was	increased	more	than	10-fold	it	can	be	
concluded	 that	 the	 simulation	 results	 are	 highly	 sensitive	 to	 the	 changes	made	 to	 the	
parameter	affecting	outward	remodeling	by	tensile	forces.	Even	though	the	change	made	
to	α7	was	within	the	defined	parameter	range	it	still	disrupted	the	simulation.	Considering	
the	 fact	 that	 changes	 to	 the	 same	 parameter	 in	 a	 similar	 extent	 do	 not	 disrupt	 the	
simulation,	geometry	was	reobserved.	What	can	be	quickly	noted	is	that	the	upper	branch	
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of	 the	 artery	 is	 significantly	 shorter.	 It	 is	 known	 from	 literature	 that	 arteries	 with	
bifurcation	are	prone	to	plaque	development	and	quick	progression	in	this	region.	Taking	
into	account	 the	 „leakage“	happened	at	 the	bifurcation	point,	 the	abrupt	 results	of	 the	
simulation	 could	 be	 due	 to	 the	 combination	 of	 geometric	 peculiarities	 combined	with	
significant	parameter	pertrubations.		

Table	20.	Parameter	comparison	LHS	(geometry	5)	

Parameter	 Default	 simulation	
parameters	

LHS	 generated	
simulation	
parameters	

Parameter	
status	

α1	 0.05	 0.05	 Const	
α2	 1.5	 4.9	 >	
α3	 0.1	 0.4	 >	
α4	 0.008	 0.008	 Const.	
α5	 0.005	 0.094	 >	
α6	 10.0	 9.3	 <	
α7	 6.0	 99.1	 >	
	 	



69 
 

Instance	6	

	
Figure	17.a	ABM	results	with	default	parameters		

Figure	17.b	ABM	results	with	LHS	generated	parameters	(Table	21.)		

Figure	17.	Graphical	result	difference	for	LHS	on	sample	geometry	6	

In	the	case	of	sample	geometry	6	there	is	again	a	significant	pertrubation	in	the	simulation	
results.	Even	though	the	parameter	driving	the	arterial	wall	remodelling	was	decreased	
the	contribution	of	the	increase	in	other	parameters	resulted	in	a	significantly	increased	
plaque	progression.	Additionally,	the	plaque	progression	in	this	case	is	irregular	as	it	is	
modeled	as	a	migration	of	the	atherosclerotic	plaque	towards	the	arterial	 lumen.	Even	
though	this	can	be	interpreted	as	the	breakage	of	the	plaque	and	thrombus	formation,	a	
significant	increase	in	the	parameter	driving	outward	remodelling	by	tensile	forces	could	
be	a	potential	disruptor	of	the	simulation.	
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Table	21.	Parameter	comparison	LHS	(geometry	6)	

Parameter	 Default	 simulation	
parameters	

LHS	generated	simulation	
parameters	

Parameter	status	

α1	 0.05	 0.05	 Const	
α2	 1.5	 2.1	 >	
α3	 0.1	 0.4	 >	
α4	 0.008	 0.008	 Const.	
α5	 0.005	 0.026	 >	
α6	 10.0	 6.5	 <	
α7	 6.0	 36.0	 >	
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Instance	7	

	
Figure	18.a	ABM	results	with	default	parameters		

	

Figure	18.b	ABM	results	with	LHS	generated	parameters	(Table	22.)		

Figure	18.	Graphical	result	difference	for	LHS	on	sample	geometry	10	

Sample	geometry	10	has	several	peculiarities.	Atherosclerotic	plaque	commonly	develops	
only	 on	 a	 single	 place	 along	 the	 artery,	 in	 close	 proximity	 to	 the	 bifurcation	 region.	
However,	 in	 this	 example,	 there	 are	 paired	 instances	 of	 atherosclerotic	 plaque	 in	 the	
upper	branch	of	the	artery	and	in	the	common	branch.	When	it	comes	to	the	results	of	the	
simulation,	once	again	the	ABM	exhibits	fidelity	in	results	as	plaque	progression	occurs	
transversally	and	longitudinally	without	infiltration	into	the	arterial	lumen.		
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Table	22.	Parameter	comparison	LHS	(geometry	10)	

Parameter	 Default	 simulation	
parameters	

LHS	generated	simulation	
parameters	

Parameter	status	

α1	 0.05	 0.05	 Const	
α2	 1.5	 7.4	 >	
α3	 0.1	 0.2	 >	
α4	 0.008	 0.008	 Const.	
α5	 0.005	 0.098	 >	
α6	 10.0	 5.7	 <	
α7	 6.0	 30.0	 >	
	
Partial	rank	correlation	coefficient	analysis	
As	the	graphical	analysis	of	the	results	showed	several	peculiarities,	it	was	necessary	to		
conduct	 a	 comprehensive	 analysis	 of	 the	 results	 obtained	 from	 LHS	 and	 to	 derive	
conclusions	about	the	parameters	most	influential	on	simulation	results.		
The	Partial	Rank	Correlation	Coefficient	(PRCC)	is	a	statistical	technique	commonly	used	
in	 sensitivity	 analysis	 to	 assess	 how	 changes	 in	 input	 parameters	 influence	 a	model’s	
output,	while	accounting	for	the	effects	of	other	variables.	It	is	particularly	advantageous	
when	dealing	with	complex	systems	where	input	parameters	may	be	interdependent,	and	
the	relationships	between	them	and	the	output	are	not	strictly	linear.	In	many	real-world	
models,	variables	interact	in	nonlinear	and	often	non-intuitive	ways,	making	it	difficult	to	
identify	which	inputs	have	the	most	significant	effect	on	the	results.	PRCC	addresses	this	
challenge	 by	 providing	 a	 rank-based	 correlation	measure	 that	 can	 capture	monotonic	
relationships,	which	are	relationships	where	variables	move	consistently	in	one	direction,	
but	 not	 necessarily	 in	 a	 linear	 fashion.	 PRCC	 is	 applied	 in	 the	 sensitivity	 analysis	 of	
systems	 such	 as	 structural	 models,	 where	 various	 design	 parameters	 (material	
properties,	 load	 conditions,	 geometric	 configurations)	 need	 to	 be	 optimized.	 By	
identifying	which	parameters	have	the	most	significant	impact	on	the	system’s	behavior,	
engineers	 can	 make	 informed	 decisions	 about	 resource	 allocation	 or	 design	
modifications.	
At	its	core,	PRCC	is	built	on	Spearman’s	rank	correlation	coefficient,	which	measures	the	
strength	and	direction	of	the	monotonic	relationship	between	two	ranked	variables.	This	
makes	PRCC	well-suited	for	models	where	traditional	linear	correlation	methods	may	fall	
short	 because	 the	 relationships	between	 inputs	 and	outputs	 are	more	 complex.	While	
Spearman’s	correlation	is	useful	for	bivariate	analysis,	PRCC	extends	this	to	a	multivariate	
context	by	adjusting	for	the	presence	of	multiple	variables.	This	adjustment	isolates	the	
unique	contribution	of	each	input	parameter	on	the	output,	even	when	other	inputs	are	
correlated	with	both	the	parameter	and	the	outcome.	This	“partial”	aspect	of	PRCC	is	what	
makes	it	so	powerful.	In	traditional	sensitivity	analysis,	correlations	might	be	computed	
directly	 between	 each	 input	 and	 the	 output,	 but	 these	 raw	 correlations	 could	 be	
misleading	due	to	 the	confounding	effects	of	other	variables.	PRCC,	on	the	other	hand,	
controls	 for	 these	confounding	effects,	ensuring	 that	 the	 influence	of	one	parameter	 is	
evaluated	while	holding	the	others	constant.	
To	compute	PRCC,	the	process	involves	the	following	key	steps:	

• Ranking	 the	 data:	 First,	 all	 data	 (inputs	 and	 output)	 are	 converted	 into	 ranks,	
which	 allows	 PRCC	 to	 focus	 on	 the	 relative	 ordering	 of	 data	 rather	 than	 their	
absolute	 values.	 This	 is	 particularly	 useful	 in	 scenarios	 where	 the	 inputs	 and	
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outputs	 are	measured	 on	 different	 scales	 or	where	 the	 exact	 values	 are	 not	 as	
important	as	their	ordering.	

• Regression	to	adjust	for	other	variables:	For	each	input	parameter,	a	regression	
analysis	 is	 performed	with	 respect	 to	 all	 other	 input	 variables.	 This	 allows	 the	
technique	to	remove	the	shared	variability	between	the	parameter	being	analyzed	
and	the	other	inputs.	Essentially,	it	computes	residuals	that	represent	the	portion	
of	the	parameter	that	cannot	be	explained	by	the	other	inputs.	

• Rank	correlation	of	residuals:	Next,	a	rank	correlation	(Spearman’s)	is	computed	
between	 the	 residuals	 of	 the	 input	 parameter	 and	 the	 residuals	 of	 the	 output	
variable,	 ensuring	 that	 the	 relationship	 being	 evaluated	 is	 independent	 of	 the	
effects	of	other	inputs.	

• Interpret	the	PRCC	value:	The	PRCC	value	ranges	from	-1	to	1.	A	PRCC	close	to	1	
indicates	 that	 the	 input	 has	 a	 strong,	 positive	monotonic	 relationship	with	 the	
output,	 meaning	 that	 as	 the	 input	 increases,	 so	 does	 the	 output,	 even	 after	
controlling	 for	 the	 other	 inputs.	 A	 PRCC	 near	 -1	 indicates	 a	 strong,	 negative	
monotonic	 relationship,	 where	 increases	 in	 the	 input	 are	 associated	 with	
decreases	 in	 the	 output.	 A	 PRCC	 around	 0	 suggests	 no	 significant	 relationship	
between	the	input	and	output	when	other	factors	are	accounted	for.	

	
PRCC	offers	several	advantages,	making	it	a	valuable	tool	for	analyzing	complex	systems:	

• Handling	 nonlinearity:	 Traditional	 sensitivity	 analysis	 methods	 like	 Pearson	
correlation	assume	linear	relationships	between	inputs	and	outputs.	PRCC	relaxes	
this	assumption	by	focusing	on	monotonic	relationships,	making	it	more	flexible	
and	suitable	for	systems	with	nonlinear	dynamics.	

• Controlling	 for	 confounding	 variables:	 One	 of	 PRCC’s	 primary	 strengths	 is	 its	
ability	 to	 control	 for	 the	 effects	 of	 other	 input	 parameters.	 In	 many	 models,	
parameters	are	interrelated,	and	simply	looking	at	their	raw	correlation	with	the	
output	 might	 lead	 to	 incorrect	 conclusions.	 PRCC	 removes	 the	 effects	 of	 these	
confounding	variables,	allowing	for	a	clearer	understanding	of	each	input’s	unique	
contribution	to	the	output.	

• Robustness	to	outliers	and	non-normal	distributions:	Because	PRCC	is	based	on	
rank	correlation,	it	is	less	sensitive	to	outliers	or	the	distribution	of	the	data.	This	
makes	it	particularly	useful	in	real-world	applications	where	input	data	might	not	
follow	a	normal	distribution,	or	where	occasional	extreme	values	could	skew	the	
results	of	traditional	correlation	methods.	

• Applicable	in	high-dimensional	systems:	PRCC	is	well-suited	for	analyzing	models	
with	many	input	parameters,	as	it	systematically	adjusts	for	the	effects	of	multiple	
variables.	This	makes	it	useful	in	fields	like	environmental	science,	epidemiology,	
and	 engineering,	 where	 models	 often	 have	 dozens	 of	 inputs	 and	 complex,	
interdependent	relationships	between	variables.	

• Interpretable	 results:	 The	 results	 of	 a	 PRCC	 analysis	 are	 straightforward	 to	
interpret.	Each	input	is	assigned	a	PRCC	value	that	indicates	its	relative	importance	
in	 driving	 the	 output,	 which	 allows	 researchers	 to	 easily	 identify	 the	 most	
influential	 parameters.	 This	 information	 can	 be	 crucial	 for	 model	 validation,	
refinement,	and	policy	decisions	in	applied	fields.	

	
Figures	19-22	show	the	PRCCs	between	the	variable	model	inputs	(α2,	α3,	α5,	α6	and	α7)	
and	target	model	outputs	such	as	arterial	wall,	arterial	and		final	content	of	fibrous	plaque	
type	and	calcified	plaque	type	respectively.		
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Figure	19.	PRCC	for	arterial	lumen		

As	it	can	be	seen	from	Figure	19.	α2,	α3,	α5	and	α6	exhibit	relatively	low	but	statistically	
significant	PRCC.	This	implies	that	the	input	parameters	have	a	meaningful	influence	on	
the	 output,	 even	 if	 the	 relationship	 is	 not	 extremely	 strong.	 This	 indicates	 increasing	
coefficients	 of	 SMC	 proliferation,	 lipid	 infiltration	 and	 outward	 remodeling	 driven	 by	
shear	forces	leads	to	a	slight	but	consistent	reduction	in	a	physiological	outcome,	which	
was	expected	as	all	of	these	parameters	should	stimulate	increased	plaque	growth	thus	
constricting	the	arterial	lumen.	

	
Figure	20.	PRCC	for	arterial	wall	
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There	are	no	statistically	significant	PRCC	scores	for	the	influence	of	variable	simulation	
parameters	 on	 remodeling	 of	 the	 arterial	 wall.	 The	 arterial	 wall's	 response	might	 be	
driven	by	a	combination	of	factors	working	together,	rather	than	any	single	parameter	
exerting	a	dominant	influence.		

	
Figure	21.	PRCC	for	fibrous	plaque	

	

The	 only	 parameter	 shown	 to	 be	 statistically	 significant	 influence	 on	 fibrous	 plaque	
decrease	 is	 the	 probability	 of	 lipid	 infiltration.	 From	 a	 biological	 point	 of	 view,	 lipid	
infiltration	leads	to	plaque	progression	towards	transition	to	calcified	plaque.		

	
Figure	22.	PRCC	for	calcified	plaque	
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Variable	parameters	α2,	α4,	α5,	α6	show	a	statistically	significant	positive	PRCC	while	α7	
shows	a	relatively	low	but	statistically	significant	PRCC.	A	positive	PRCC	for	α2		suggests	
that	 increased	 smooth	 muscle	 cell	 activity	 contributes	 to	 plaque	 growth,	 while	 α4	
indicates	 that	 weakening	 of	 the	 extracellular	 matrix	 exacerbates	 arterial	 occlusion.	
Similarly,	α5	plays	a	 crucial	 role	 in	plaque	 formation	by	 increasing	 lipid	accumulation	
within	the	artery	and	α6	positively	affects	the	lumen,	suggesting	that	hemodynamic	forces	
help	 maintain	 or	 expand	 the	 arterial	 diameter,	 while	 α7	 shows	 a	 weaker,	 but	 still	
significant,	 influence	 on	 outward	 remodeling.	 These	 findings	 underscore	 the	 complex	
interplay	 between	 cellular	 proliferation,	 lipid	 dynamics,	 and	mechanical	 forces	 in	 the	
progression	of	atherosclerosis.	

	

4.3. Surrogate model 
Computational	modeling	framework	of	coupled	ABM	and	FEM	is	powerful	but	it	comes	at	
a	price	of	time	intensity,	lack	of	flexibility	and	specific-knowledge	required	to	conduct	it.	
As	 the	aim	of	biomedical	engineering	 is	 to	simplify	processess	 in	healthcare	making	 it	
more	efficient	and	cost	 effective,	 thus	enhancing	 the	quality	of	 treatment,	 an	AI-based	
system	for	prediction	of	the	extent	of	plaque	progression	was	developed.		
A	 vast	 amout	 of	 data	 was	 generated	 through	 LHS	 and	 that	 data	 was	 used	 for	 the	
development	of	the	AI	algorithm.	The	workflow	is	presented	in	Figure	23.	
	

	
Figure	23.	Workflow	surrogate	model	development	

	
The	 development	 of	 a	 surrogate	model	 for	 estimating	 the	 class	 of	 plaque	 progression	
based	 on	 ABM	 parameters	 and	 initial	 plaque	 content	 involves	 several	 critical	 steps,	
starting	from	data	preparation	to	model	evaluation.	This	process	aims	to	replace	detailed	
simulations	 with	 a	 simplified,	 yet	 accurate,	 predictive	 model,	 significantly	 reducing	
computational	 time	 and	 complexity	 while	 maintaining	 acceptable	 levels	 of	 prediction	
accuracy.	
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4.3.1. Dataset curration 
The	success	of	a	surrogate	model	relies	heavily	on	the	quality	and	comprehensiveness	of	
the	dataset	used	to	train	and	validate	the	model.	In	this	work,	the	dataset	was	constructed	
from	detailed	simulations	of	plaque	development	within	the	arterial	wall,	using	an	ABM	
framework.	 This	 approach	 allowed	 for	 the	 precise	 modeling	 of	 complex	 biological	
interactions	 that	 occur	 during	 plaque	 formation,	 providing	 a	 rich	 source	 of	 data	 for	
building	an	accurate	and	efficient	surrogate	model.	The	data	comprises	two	fundamental	
components:	initial	plaque	content	and	ABM	parameters.	
The	 initial	plaque	content	refers	 to	 the	baseline	state	of	 the	arterial	plaque	before	any	
progression	 or	 treatment	 interventions.	 This	 data	 is	 critical	 because	 it	 establishes	 the	
starting	 point	 from	which	 plaque	 growth	 and	progression	 are	 simulated.	 In	 biological	
terms,	 the	 composition	 and	 state	 of	 the	 plaque	 at	 this	 initial	 stage	 determine	 how	 it	
evolves	 over	 time,	 driven	 by	 cellular	 and	 molecular	 interactions.	 The	 initial	 plaque	
content	serves	as	the	input	for	ABM	simulations,	dictating	how	the	plaque	behaves	under	
various	conditions.	The	heterogeneity	in	this	starting	content	provides	a	wide	range	of	
possible	plaque	development	outcomes,	which	the	surrogate	model	aims	to	predict.	
	
In	addition	to	the	initial	plaque	content,	the	dataset	includes	a	series	of	ABM	parameters	
defined	in	..	These	parameters	define	the	rules	and	mechanisms	governing	the	behavior	
of	 various	 agents	 (e.g.,	 cells,	molecules)	within	 the	 ABM.	 They	 represent	 the	 dynamic	
processes	that	drive	plaque	progression	over	time.	
	
The	key	ABM	parameters	used	in	this	study	are:	

• Cellular	proliferation	rates:	These	rates	govern	how	quickly	smooth	muscle	cells	
and	macrophages	divide	and	accumulate	within	the	plaque.	For	instance,	smooth	
muscle	cells	can	proliferate	in	response	to	inflammatory	signals,	contributing	to	
the	thickening	of	 the	plaque’s	 fibrous	cap.	The	rate	of	macrophage	proliferation	
also	impacts	inflammation	and	plaque	vulnerability.	

• ECM	 degradation	 rate:	 The	 balance	 between	 ECM	 production	 and	 degradation	
affects	plaque	stability.	Excess	ECM	degradation,	often	driven	by	enzymes	secreted	
by	 macrophages,	 can	 weaken	 the	 plaque’s	 structure	 and	 increase	 the	 risk	 of	
rupture.	Conversely,	excessive	ECM	production	can	lead	to	excessive	thickening	of	
the	plaque,	potentially	narrowing	the	arterial	lumen.	

• Lipid	 infiltration	and	 transport	dynamics:	The	rate	at	which	 lipids	 infiltrate	 the	
arterial	wall	and	their	subsequent	transport	across	different	layers	of	the	artery	
are	key	drivers	of	plaque	progression.	The	ABM	simulates	how	lipids	accumulate	
in	the	plaque	and	trigger	further	inflammatory	responses,	driving	the	formation	of	
foam	cells.	

• Parameters	driving	the	arterial	wall	remodelling	on	the	meso-scale	in	response	to	
the	micro-scale	ABM	

Each	 of	 these	 parameters	 influences	 the	 evolution	 of	 the	 plaque	 in	 a	 unique	 way,	
contributing	to	the	overall	complexity	of	the	disease	process.	For	example,	higher	cellular	
proliferation	rates	may	lead	to	a	more	aggressive	form	of	plaque	growth,	while	increased	
ECM	degradation	could	result	in	a	more	vulnerable	plaque	prone	to	rupture.	
	
Given	 the	 inherent	 complexity	 of	 the	 biological	 processes	 involved	 in	 plaque	
development,	 it	 is	 critical	 to	 ensure	 that	 the	 dataset	 covers	 a	 wide	 range	 of	 possible	
scenarios.	 In	 this	 study,	 LHS	 was	 used	 to	 vary	 the	 initial	 plaque	 content	 and	 ABM	
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parameters	across	a	wide	range	of	plausible	values.	This	approach	ensures	that	all	areas	
of	 the	parameter	 space	are	 sampled	adequately,	which	 is	particularly	 important	when	
modeling	complex,	non-linear	systems	like	plaque	progression.	By	using	LHS,	the	study	
was	 able	 to	 generate	 a	 diverse	 set	 of	 simulation	 runs,	 each	 representing	 different	
combinations	of:	
-	 Probability	of	mitosis	and	apoptosis	
-	 Smooth	muscle	cell	(SMC)	division	in	the	intimal	layer	
-	 Extracellular	matrix	(ECM)	deposition	in	intimal	layer	
-	 ECM	deposition	in	medial	layer	
-	 SMC	division	in	medial	layer	
-	 Outward	remodeling	driven	by	shear	forces	
-	 Outward	remodeling	driven	by	tensile	forces	
Each	simulation	run	represents	a	unique	instance	of	plaque	development	under	specific	
conditions,	providing	the	dataset	necessary	for	training	the	surrogate	model.		
The	LHS	approach	was	used	to	generate	1500	simulations,	each	representing	different	
combinations	 of	 initial	 conditions	 and	 ABM	 parameters.	 These	 simulations	 were	 run	
through	the	agent-based	model,	which	tracks	the	progression	of	the	plaque	over	time.	The	
simulation	 outputs	 include	 the	 final	 plaque	 state	 and	 the	 progression	 class	 (i.e.,	 no	
progression,	moderate	progression,	or	 severe	progression),	which	serves	as	 the	 target	
variable	for	the	surrogate	model.	
The	resulting	dataset	includes	a	comprehensive	range	of	conditions,	making	it	suitable	for	
training	a	surrogate	model	capable	of	predicting	plaque	progression	based	on	the	initial	
plaque	content	and	ABM	parameters	alone.	This	dataset	forms	the	basis	for	all	subsequent	
steps	in	the	surrogate	model	development	process,	including	feature	engineering,	model	
training,	and	evaluation.	
	

4.3.2. Data retrieval 
Once	the	simulations	were	completed,	the	focus	shifted	to	retrieving	the	critical	data	for	
analysis,	 specifically	 from	 large	 `.vtk`	 files	 that	 contained	 information	 about	 the	
progression	of	atherosclerotic	plaque	within	arteries.	 .vtk	files	store	information	about	
points	(vertices),	connectivity	(how	those	points	form	shapes	like	triangles	or	polygons),	
and	attributes	(e.g.,	color,	scalar	values,	or	vector	fields)	for	visualization	and	analysis	of	
the	agent	based	simulation.	These	simulations	had	been	executed	across	multiple	cases,	
each	stored	in	a	dedicated	folder.	Each	folder	represented	a	different	simulation	scenario	
with	 unique	 input	 parameters	 that	 influenced	 the	 progression	 of	 plaque.	 The	 data	
extraction	 process	 was	 essential	 for	 analyzing	 how	 various	 factors	 affected	 plaque	
buildup	and	arterial	occlusion	over	time.	

Initially,	 the	 challenge	was	 to	 parse	 through	 the	 `.vtk`	 files.	 These	 files,	 often	used	 for	
scientific	 data	 visualization,	 contained	 massive	 amounts	 of	 data	 across	 hundreds	 of	
thousands	of	lines.	The	relevant	data	regarding	plaque	progression	was	stored	between	
specific	 lines	 and	 columns.	 It	 was	 essential	 to	 focus	 on	 just	 this	 subset	 to	 reduce	
unnecessary	processing	overhead.	In	this	particular	case,	the	lines	of	interest	ranged	from	
487883	to	532702.	Additionally,	the	desired	data	was	located	within	certain	columns	of	
these	lines	(columns	5	to	7),	meaning	that	the	script	had	to	be	precise	in	targeting	the	
correct	sections	of	the	file.		

Given	 the	 size	 of	 the	 files,	 manually	 opening	 and	 reviewing	 them	 was	 impractical.	
Therefore,	 an	 automated	 approach	 was	 necessary.	 A	 Python	 script	 was	 developed	 to	
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systematically	go	through	each	folder,	open	the	̀ .vtk`	files,	read	through	the	relevant	lines,	
and	extract	the	specific	column	data.	The	files	`PAKF0001.vtk`	and	`PAKF0015.vtk`	were	
of	particular	interest	since	they	contained	critical	data	snapshots	at	different	time	points	
in	the	simulations.	These	two	files	represented	the	progression	of	the	plaque	at	different	
stages,	and	the	goal	was	to	compare	the	data	between	these	stages	to	understand	how	the	
plaque	evolved	under	different	conditions.	

The	 script	 was	 designed	 to	 iterate	 over	 all	 the	 folders	 named	 according	 to	 a	 specific	
pattern,	 such	 as	 "abm0",	 "abm1",	 and	 so	 on.	 It	 ensured	 that	 only	 folders	 containing	
simulation	data	were	processed,	thus	avoiding	any	irrelevant	files.	For	each	folder,	 the	
script	accessed	the	`.vtk`	 files	and	read	through	the	required	line	ranges,	collecting	the	
data	 from	the	necessary	columns.	This	data	was	then	stored	 in	a	Pandas	DataFrame,	a	
flexible	and	powerful	data	structure	used	for	handling	tabular	data	in	Python.	

Once	the	data	from	the	two	̀ .vtk`	files	was	extracted	and	stored	in	the	DataFrame,	the	next	
step	was	to	save	this	data	into	an	Excel	file.	The	script	created	a	new	Excel	file	for	each	
simulation	folder,	with	the	data	from	both	`PAKF0001`	and	`PAKF0015`	represented	as	
separate	columns	in	the	spreadsheet.		̀ PAKF0001`	and	̀ PAKF0015`	contain	the	simulation	
results	 for	2	distinct	datapoints	 in	a	 simulation	cycle.	This	allowed	 the	 results	of	 each	
simulation	to	be	easily	accessed	and	analyzed	in	Microsoft	Excel	or	any	other	software	
that	could	handle	`.xlsx`	files.		

The	initial	process	involved	saving	each	Excel	file	in	a	corresponding	subfolder	within	the	
output	 directory.	 However,	 as	 the	 requirements	 evolved,	 it	 became	 clear	 that	 a	more	
efficient	 approach	was	 needed	 to	 centralize	 all	 the	 Excel	 files	 into	 a	 single	 directory,	
making	them	easier	to	access	and	manage.	The	code	was	adjusted	accordingly	to	bypass	
subfolder	structures	and	place	all	Excel	files	directly	into	one	folder.	

After	 the	 initial	 data	 extraction	 and	 storage,	 the	 focus	 shifted	 toward	 analyzing	 the	
transitions	 between	 the	 stages	 of	 plaque	 progression	 represented	 by	 the	 data	 in	
`PAKF0001`	and	`PAKF0015`.	This	required	calculating	the	changes	in	plaque	categories	
between	the	two	stages,	essentially	identifying	how	frequently	the	arterial	tissue	behaved	
and	how	transitions	from	1	(vessel	lumen)	and	2	(vessel	wall)		to	3	(fibrous	plaque)	and	
4	 (calcified	 plaque)	 occured	 and	 to	 which	 extent.	 The	 transitions	 were	 critical	 for	
understanding	 the	 dynamics	 of	 plaque	 development	 and	 how	 different	 simulation	
parameters	affected	these	dynamics.		

To	 handle	 this,	 the	 data	 was	 compared	 between	 the	 two	 columns	 of	 the	 Excel	 files	
corresponding	 to	 `PAKF0001`	 and	 `PAKF0015`.	 The	 transitions	were	 categorized	 into	
different	scenarios,	such	as	plaque	moving	from	category	1	to	category	2,	or	from	category	
2	 to	 category	 4.	 A	 variety	 of	 transition	 types	were	 considered	 to	 capture	 all	 possible	
changes,	including	combinations	such	as	moving	from	category	1	to	either	category	3	or	
4.	 The	 goal	 was	 to	 generate	 a	 detailed	 profile	 of	 how	 the	 plaque	 progressed	 in	 each	
simulation.	

For	each	transition	type,	the	total	number	of	occurrences	was	calculated,	and	then	these	
occurrences	were	converted	into	percentages	to	give	a	clearer	picture	of	the	distribution	
of	 transitions.	These	percentages	reflected	the	proportion	of	 transitions	relative	to	 the	
total	number	of	data	points,	allowing	for	easy	comparison	between	different	simulations.	
Finally,	the	percentage	transitions	were	arbitrarily	classified	into	three	classes	to	capture	
the	heterogeneity	of	the	plaque	progression	cases	:	
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• 0	-	„insignificant	plaque	progression“(	<0.05%)	
• 1	–	„significant	plaque	progression“	(0.05%-0.15%)	
• 2	–	„severe	plaque	progression“	(>0.15%)	

After	the	transition	analysis	for	all	simulations	was	completed,	the	results	were	compiled	
into	a	single	Excel	workbook.	Each	sheet	in	the	workbook	corresponded	to	one	simulation	
case	and	contained	the	detailed	transition	analysis	for	that	case.	The	final	output	provided	
a	comprehensive	overview	of	how	plaque	progressed	across	all	the	simulations,	with	easy	
access	to	both	the	raw	extracted	data	and	the	calculated	transition	percentages.	

4.3.3. Data	analysis	
Once	the	data	from	the	simulations	had	been	successfully	retrieved	and	organized	into	
Excel	files,	the	next	step	was	conducting	a	detailed	statistical	analysis.	This	analysis	aimed	
to	 uncover	 patterns,	 correlations,	 and	 key	 insights	 from	 the	 large	 dataset	 of	 plaque	
progression	 parameters	 across	 various	 simulations.	 The	 process	 began	 with	 basic	
descriptive	 statistics	 to	 provide	 an	 overview	 of	 the	 data	 and	 then	 moved	 into	 more	
advanced	 techniques	 such	 as	 Principal	 Component	 Analysis	 (PCA)	 for	 dimensionality	
reduction.	

The	first	step	in	the	statistical	analysis	involved	calculating	descriptive	statistics	for	each	
feature	extracted	from	the	simulation	data.	These	statistics	included	measures	such	as	the	
mean,	median,	standard	deviation,	and	interquartile	range	for	each	variable.	Given	that	
the	 simulations	 involved	 multiple	 parameters—each	 influencing	 the	 progression	 of	
atherosclerotic	plaque—it	was	critical	to	understand	the	distribution	of	these	parameters	
individually	before	delving	into	more	complex	relationships	(Figure	24).	
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Figure	24.	Descriptive	statistics	of	the	dataset	showing	min,	max,	mean,	STD,	25%,	50%	

and	75%	characteristics	of	the	data	

The	descriptive	statistics	provided	a	foundational	understanding	of	how	each	parameter	
behaved	across	different	simulations.	As	the	aim	of	conducting	a	substantial	number	of	
simulations	to	cover	as	much	as	possible	variability	and	different	simulation	cases	it	was	
necessary	 to	observe	 the	 statistical	behavior	of	 individual	parameters.	Obserbving	 the	
standard	 deviations	 revealed	 the	 approximate	 discrepancies	 amongst	 different	
simulation	scenarios,	important	to	grasp	weather	the	dataset	covers	enough	variability	
while	 analysis	 of	 min	 and	 max	 for	 each	 parameter	 enabled	 understanding	 weather	
extremes	are	covered	for	parameters.	For	example,	examining	the	range	and	variability	
in	plaque	thickness	or	changes	in	material	composition	helped	to	identify	any	outliers	or	
extreme	values	that	might	affect	the	overall	analysis	and	contribute	to	extreme	cases	to	
cover	 peculiar	 pathologies.	 Skewness	 and	 kurtosis	 were	 also	 calculated	 to	 assess	 the	
symmetry	and	peakedness	of	the	data	distributions,	giving	further	insights	into	the	nature	
of	the	dataset.	

In	 this	 stage,	 histograms	 were	 used	 to	 visualize	 the	 spread	 of	 each	 variable.	 These	
visualizations	helped	 to	 identify	any	non-normal	distributions	or	skewed	data,	both	of	
which	would	need	 to	be	addressed	before	proceeding	 to	more	advanced	analyses.	For	
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instance,	if	a	parameter	exhibited	a	highly	skewed	distribution,	transformations	such	as	
log	or	square-root	 transformations	were	considered	 to	normalize	 the	data,	ensuring	 it	
was	suitable	for	subsequent	steps.	

	
Figure	25.	Distribution	of	parameter	α2.	

Parameter	a2	 exhibits	 a	 highly	 skewed	 distribution	 to	 the	 left.	When	 a	 distribution	 is	
characterized	by	a	left	skew,	or	negative	skewness,	 it	 indicates	that	the	majority	of	the	
data	points	are	concentrated	on	the	right	side	of	the	distribution,	with	the	tail	extending	
to	the	left.	This	scenario	often	suggests	that	while	most	of	the	values	are	relatively	high,	
there	 are	 a	 few	 significantly	 lower	 values	 that	 are	 pulling	 the	 average	 down.	 The	
distribution	 of	 the	 parameter	which	 represents	 the	 probability	 of	 smooth	muscle	 cell	
(SMC)	proliferation	in	the	tunica	media,	exhibits	a	prominent	peak	on	the	left	side	of	the	
distribution	 curve.	 This	 indicates	 that	 the	majority	 of	 the	 sampled	 data	 points	 cluster	
around	 relatively	 low	 probabilities	 of	 SMC	 proliferation,	 suggesting	 that	 under	 most	
physiological	 conditions,	 SMC	 proliferation	 is	 limited.	 This	 leftward	 concentration	 is	
typical	 of	 a	 distribution	 where	most	 observations	 reflect	 normal	 physiological	 states,	
where	 SMC	 activity	 is	 kept	 in	 check	 to	 maintain	 vascular	 homeostasis.	 However,	 the	
pronounced	peak	indicates	that,	while	the	baseline	probability	of	SMC	proliferation	is	low	
for	most	conditions,	it	is	crucial	to	recognize	the	context	in	which	these	low	values	exist.	
The	 peak	 signifies	 that	 under	 typical	 scenarios—where	 there	 are	 no	 significant	
pathological	 stimuli—the	 probability	 of	 SMC	 proliferation	 remains	 minimal.	 Such	
conditions	 might	 involve	 a	 stable	 vascular	 environment	 with	 balanced	 biochemical	
signals,	low	levels	of	inflammation,	and	normal	mechanical	stresses.	
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Figure	26.	Distribution	of	parameter	α3	

The	long	right	tail	of	the	skewed	a3,or	positive	skewness,	indicates	that	most	of	the	data	
points	are	concentrated	on	the	left	side	of	the	distribution,	while	a	few	high	values	extend	
the	tail	to	the	right.	This	type	of	distribution	is	often	seen	in	situations	where	the	majority	
of	 observations	 are	 relatively	 low,	but	 there	 are	 a	 small	 number	of	 exceptionally	high	
values	that	significantly	influence	the	mean.	It	suggests	that	while	most	of	the	sampled	
conditions	 represent	 lower	 probabilities	 of	 SMC	 proliferation—indicating	 a	 typical	
response	 under	 most	 physiological	 conditions—there	 are	 specific	 cases	 where	 the	
probability	spikes	to	much	higher	levels.	These	high-probability	cases	are	likely	tied	to	
scenarios	 where	 multiple	 influential	 factors	 align	 favorably,	 such	 as	 elevated	
concentrations	 of	 growth	 factors,	 the	 presence	 of	 certain	 inflammatory	 signals,	 or	
particular	biomechanical	 stresses	within	 the	vessel	wall.	The	presence	of	 these	outlier	
conditions	 is	 crucial	 to	 understand	 because	 they	 can	 lead	 to	 significant	 pathological	
outcomes,	such	as	excessive	intimal	hyperplasia	or	plaque	formation.	The	LHS	approach	
ensures	that	 these	extreme	values	are	not	merely	a	product	of	random	chance	but	are	
systematically	included	in	the	analysis.	Consequently,	the	long	right	tail	in	the	resulting	
distribution	reflects	a	genuine	risk	of	heightened	SMC	proliferation	under	specific,	albeit	
less	frequent,	conditions.	
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Figure	27.	Distribution	of	parameter	α5	

The	parameter	a5,	representing	the	probability	of	lipid	infiltration,	displays	a	nearly	flat	
distribution	across	the	range	of	sampled	values.	This	characteristic	indicates	a	relatively	
uniform	likelihood	of	 lipid	 infiltration	occurring	within	 the	studied	context,	suggesting	
that	the	conditions	influencing	this	process	do	not	lead	to	significant	peaks	or	troughs	in	
probability.	 In	a	scenario	where	the	probability	distribution	 is	 flat,	 it	 implies	 that	 lipid	
infiltration	can	happen	across	a	wide	range	of	circumstances	without	being	significantly	
influenced	by	any	specific	 factor.	Essentially,	 the	chances	of	 lipid	accumulation	remain	
consistent,	 irrespective	of	variations	 in	other	parameters	or	environmental	conditions.	
This	 could	 be	 indicative	 of	 a	 physiological	 state	 where	 lipid	 infiltration	 is	 a	 common	
process	occurring	under	various	influences,	rather	than	a	response	that	is	tightly	linked	
to	 specific	 triggers	 or	 conditions.	 The	 flatness	 of	 the	 distribution	 suggests	 that	 lipid	
infiltration	 is	 a	 somewhat	 ubiquitous	 process	 within	 the	 arterial	 wall,	 potentially	
reflecting	a	baseline	state	where	lipids	are	consistently	present	and	integrated	into	the	
vessel	environment.	Factors	contributing	 to	 this	uniformity	might	 include	steady-state	
levels	of	 circulating	 lipoproteins,	 consistent	dietary	 influences,	or	a	 relatively	constant	
state	of	endothelial	 function,	which	does	not	fluctuate	dramatically	across	the	sampled	
conditions.	A	flat	distribution	may	also	indicate	that	there	is	a	lack	of	strong	pathological	
stimuli	that	would	otherwise	concentrate	the	probability	of	lipid	infiltration	in	particular	
scenarios.	 In	 other	 words,	 while	 lipid	 infiltration	 can	 occur,	 it	 does	 not	 appear	 to	 be	
heavily	 influenced	 by	 extreme	 conditions	 or	 changes	 in	 parameters,	 thus	 leading	 to	 a	
more	even	representation	across	the	entire	range.	
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Figure	28.	Distribution	of	parameter	α6	

The	parameter	a6	,	which	represents	arterial	remodeling	driven	by	shear	forces,	exhibits	
a	distribution	characterized	by	a	pronounced	peak	on	the	left	side	and	a	sharp	drop-off	
towards	the	right.	This	shape	suggests	that	most	of	the	observations	cluster	around	lower	
values,	indicating	that	arterial	remodeling	due	to	shear	forces	typically	occurs	at	minimal	
levels.	 The	 large	 peak	 signifies	 that	 the	 majority	 of	 cases	 involve	 mild	 to	 moderate	
remodeling	in	response	to	normal	physiological	conditions.	This	clustering	of	values	at	
the	 lower	 end	 implies	 that	 under	 typical	 circumstances—such	 as	 healthy	 blood	 flow	
patterns—the	remodeling	processes	in	the	arterial	wall	are	subtle.	These	adaptations	can	
include	slight	adjustments	in	smooth	muscle	cell	behavior,	minor	changes	in	extracellular	
matrix	composition,	or	other	physiological	mechanisms	 that	 support	vascular	 function	
without	leading	to	significant	alterations	in	arterial	structure.	The	rapid	drop-off	to	the	
right	indicates	that	as	we	move	toward	higher	levels	of	a6,	there	are	far	fewer	instances	
of	 pronounced	 arterial	 remodeling.	 This	 steep	 decline	 suggests	 that	 significant	
remodeling	events	driven	by	shear	forces	are	relatively	rare.	When	they	do	occur,	they	
may	 be	 associated	with	 specific	 pathological	 conditions,	 such	 as	 abnormal	 blood	 flow	
patterns,	increased	turbulence,	or	heightened	hemodynamic	stress.	Such	conditions	can	
lead	to	substantial	changes	in	arterial	architecture,	potentially	contributing	to	vascular	
diseases	or	conditions	 like	atherosclerosis.	The	presence	of	 this	distribution	highlights	
the	importance	of	understanding	the	normal	range	of	arterial	remodeling	driven	by	shear	
forces.	 Most	 scenarios	 involve	 modest	 remodeling	 that	 is	 essential	 for	 maintaining	
vascular	health.	However,	 the	 few	high	values	 that	 fall	off	sharply	 to	 the	right	 indicate	
potential	risk	factors	or	pathological	states	that	warrant	attention.	Recognizing	these	rare	
but	 significant	 remodeling	 events	 is	 crucial	 for	 developing	 strategies	 to	 address	 and	
mitigate	adverse	cardiovascular	outcomes.	
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Figure	29.	Distribution	of	parameter	α7	

The	 parameter	 a7,	 which	 represents	 remodeling	 driven	 by	 tensile	 forces,	 displays	 a	
distribution	that	is	largely	flat	with	a	distinct	peak	on	the	left	side.	This	shape	indicates	
that	most	of	the	values	are	concentrated	around	lower	levels	of	remodeling,	suggesting	
that	tensile	forces	typically	exert	a	moderate	influence	on	arterial	structure.	The	presence	
of	a	prominent	peak	on	 the	 left	 signifies	 that	 the	majority	of	 cases	 involve	minimal	 to	
moderate	remodeling	in	response	to	normal	tensile	stresses	experienced	by	the	arterial	
walls	during	regular	physiological	conditions.	These	low-level	adaptations	are	essential	
for	maintaining	the	structural	integrity	and	functionality	of	the	artery	under	the	forces	
exerted	by	blood	flow.	They	may	involve	subtle	changes,	such	as	slight	alterations	in	the	
composition	or	organization	of	the	extracellular	matrix	or	modest	adjustments	in	smooth	
muscle	cell	activity.	The	flat	nature	of	the	distribution	indicates	that	there	is	a	broad	range	
of	 values	 around	 this	 peak,	 suggesting	 that	 while	 most	 cases	 involve	 lower	 levels	 of	
remodeling,	there	is	a	significant	variability	in	how	arterial	walls	respond	to	tensile	forces.	
This	variability	could	be	influenced	by	factors	such	as	individual	differences	in	vascular	
biology,	local	hemodynamic	conditions,	and	the	mechanical	properties	of	the	arterial	wall	
itself.	 However,	 the	 lack	 of	 significant	 values	 extending	 towards	 the	 right	 side	 of	 the	
distribution	implies	that	high	levels	of	remodeling	driven	by	tensile	forces	are	relatively	
rare.	 When	 they	 do	 occur,	 they	 may	 be	 associated	 with	 specific	 conditions,	 such	 as	
pathological	 hypertension	 or	 significant	 vascular	 stress,	 which	 can	 lead	 to	 excessive	
remodeling	that	compromises	arterial	function.	
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Figure	30.	Distribution	of	“initial	plaque	content”	variable	

The	 initial	 distribution	 of	 plaque	 content	 exhibits	 a	 unique	 pattern	 characterized	 by	
several	peaks	on	the	left,	followed	by	a	gap,	and	then	additional	peaks	on	the	right.	This	
multimodal	 distribution	 suggests	 a	 complex	 relationship	 between	 various	 factors	
influencing	plaque	development	within	the	arterial	walls.	The	presence	of	multiple	peaks	
on	the	left	side	of	the	distribution	indicates	that	there	are	several	common	states	of	low	
plaque	 content,	 where	 the	majority	 of	 cases	 fall.	 These	 peaks	 likely	 represent	 typical	
physiological	conditions	where	minimal	plaque	accumulation	occurs,	reflecting	healthy	
arterial	 function	 and	 effective	 regulatory	 mechanisms	 that	 prevent	 excessive	 lipid	
deposition	and	inflammation.	Such	states	may	be	influenced	by	factors	such	as	optimal	
shear	stress,	the	presence	of	protective	endothelial	functions,	and	effective	clearance	of	
lipids	and	inflammatory	cells	from	the	arterial	wall.	The	gap	between	the	left	and	right	
peaks	signifies	a	notable	absence	of	cases	with	moderate	plaque	content,	suggesting	that	
this	 range	 may	 represent	 a	 transitional	 phase	 where	 arterial	 health	 is	 particularly	
vulnerable.	This	void	could	indicate	that	under	normal	physiological	conditions,	arteries	
tend	 to	 either	 remain	 relatively	 clear	 of	 plaque	 or	 progress	 to	 significant	 plaque	
accumulation	 due	 to	 a	 combination	 of	 risk	 factors	 such	 as	 elevated	 lipid	 levels,	
inflammation,	 and	 mechanical	 stress.	 The	 peaks	 on	 the	 right	 side	 of	 the	 distribution	
represent	scenarios	of	higher	plaque	content,	indicating	that	while	most	conditions	tend	
to	 favor	 lower	 plaque	 levels,	 there	 are	 specific	 pathological	 states	 where	 significant	
plaque	 accumulation	 occurs.	 These	 peaks	 might	 reflect	 conditions	 of	 advanced	
atherosclerosis,	 where	 a	 combination	 of	 risk	 factors,	 such	 as	 chronic	 inflammation,	
prolonged	 exposure	 to	 high	 lipid	 levels,	 and	 mechanical	 stress,	 converge	 to	 drive	
substantial	plaque	formation.		

Once	 the	 descriptive	 statistics	 were	 reviewed,	 the	 next	 step	 involved	 calculating	
correlation	 matrices	 to	 assess	 the	 relationships	 between	 the	 different	 variables.	 This	
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allowed	for	an	exploration	of	how	different	simulation	parameters	influenced	each	other.	
Pearson	correlation	coefficients	were	used	to	quantify	the	strength	and	direction	of	linear	
relationships	between	variables,	while	Spearman's	 rank	correlation	was	used	 for	non-
linear	relationships.	

	
Figure	31.	Correlation	heatmap	for	input	and	output	variables	

By	 examining	 the	 correlation	 matrix	 (Figure	 31),	 it	 became	 clear	 that	 none	 of	 the	
parameters	exhibit	strong	correlation	neither	with	one	another	nor	with	the	output.	As	
atherosclerosis	is	a	process	dependent	on	parameters	that	do	not	behave	in	congruency	
with	one	another,	the	correlation	matrix	of	this	kind	was	expected	and	it	confirmed	that	
the	 simulation	 instances	 generated	 by	 LHS	mimic	 real-world	 conditions	 and	 that	 the	
creation	 of	 a	 realistic	 virtual	 population	 was	 successful.	 Understanding	 these	
relationships	was	 important	 to	note	 that	complex	machine	 learning	algorithms	will	be	
necessary	in	order	to	draw	inference	and	recognize	patterns	in	this	data.			

Recognizing	and	addressing	this	issue	early	was	key	to	ensuring	that	the	next	phases	of	
analysis,	 such	 as	 PCA,	 were	 robust	 and	 reliable.	 Given	 the	 high	 dimensionality	 of	 the	
dataset,	multiple	 parameters	 for	 each	 simulation	 case,	 PCA	was	 applied	 to	 reduce	 the	
dimensionality	and	simplify	the	complexity	of	the	data	while	retaining	as	much	variance	
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as	possible.	The	main	goal	of	PCA	was	to	transform	the	data	into	a	new	set	of	uncorrelated	
variables	called	principal	components.	These	components	represented	the	directions	in	
which	the	data	varied	the	most,	allowing	for	a	more	efficient	exploration	of	the	key	factors	
influencing	plaque	progression.	

The	PCA	process	began	by	standardizing	the	data,	ensuring	that	each	variable	had	a	mean	
of	zero	and	a	standard	deviation	of	one.	This	step	was	crucial	because	PCA	is	sensitive	to	
the	relative	scales	of	the	variables;	without	standardization,	variables	with	larger	scales	
could	dominate	the	first	principal	components,	skewing	the	results.	Once	the	data	was	
standardized,	 the	 PCA	 algorithm	 was	 applied.	 The	 first	 principal	 component	 (PC1)	
explained	 the	 maximum	 amount	 of	 variance	 in	 the	 data,	 followed	 by	 the	 second	
component	(PC2),	and	so	on.		

A	pairplot	of	features	per	class	was	used	to	visualize	the	percentage	of	variance	explained	
by	 each	 principal	 component,	 helping	 to	 determine	 how	many	 components	 should	 be	
retained	for	further	analysis.	In	this	case,	the	first	few	components	typically	explained	a	
significant	proportion	of	the	variance,	allowing	the	dataset	to	be	reduced	to	a	handful	of	
principal	components	without	sacrificing	much	information.		
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Figure	32.	Pairplots	of	features	per	class	

The	 pairplot	 of	 features	 per	 class	 (Figure	 32)	 provides	 the	 same	 conclusion	 as	 the	
correlation	 matrix	 and	 that	 is	 the	 fact	 that	 the	 features	 exhibit	 very	 low	 interclass	
variability	and	very	high	 intraclass	variability	making	 them	overlap	 in	all	 cases	except	
when	plaque	content	(response	variable)	is	considered.	

After	application	on	individual	variables,	PCA	was	applied	to	the	entire	dataset	in	order	
to	 determine	 weather	 additional	 feature	 engineering	 will	 be	 necessary	 and	 to	 gain	
insights	into	the	underlying	structure	of	the	data.	Each	principal	component	was	a	linear	
combination	of	the	original	variables,	and	the	loadings	of	these	variables	indicated	their	
contribution	to	the	component.	By	examining	the	loadings,	it	was	possible	to	understand	
which	variables	were	the	most	important	in	driving	plaque	progression.	For	instance,	PC1	
might	 heavily	 load	 on	 variables	 related	 to	 arterial	 stiffness	 and	 plaque	 thickness,	
indicating	that	these	factors	were	the	primary	drivers	of	variance	in	the	data.	Additionally,	
scatter	plots	of	the	first	two	or	three	principal	components	were	created	to	visualize	how	
the	 simulation	 cases	 clustered	 in	 the	 reduced-dimensional	 space.	 These	 plots	 helped	
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identify	any	natural	groupings	or	clusters	of	simulations,	which	could	indicate	different	
progression	patterns.	Outliers	could	also	be	easily	spotted	in	these	plots,	offering	a	way	
to	flag	simulations	with	unusual	behavior	that	warranted	further	investigation.	

	
Figure	33.	PCA	results	

After	 examining	 the	 PCA	 graph	 (Figure	 33),	 which	 illustrates	 the	 distribution	 of	 the	
dataset	in	its	original	feature	space,	it	is	essential	to	consider	the	implications	of	reducing	
the	dimensionality	of	the	data.	By	transforming	the	data	into	a	lower-dimensional	space,	
we	 can	 effectively	 capture	 the	 most	 significant	 variance	 while	 minimizing	 the	 noise	
associated	with	irrelevant	features.	This	process	not	only	simplifies	the	complexity	of	the	
data	but	also	enhances	visualization,	allowing	for	more	straightforward	interpretation	of	
the	 underlying	 structure.	 The	 subsequent	 analysis	was	 intended	 to	 focus	 on	 how	 this	
reduction	facilitates	better	classification	performance	and	provides	clearer	insights	into	
the	relationships	among	the	data	points.	
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Figure	34.	Clusters	in	PCA-reduced	feature	space	

Due	 to	 the	 complexity	 of	 the	 problem	 and	 aforementioned	 high	 intraclass	 variability	
combined	with	low	interclass	variability,	dimensionality	reduction	did	not	contribute	to	
enhancing	 the	 PCA	 results.	 This	 has	 lead	 to	 a	 conclusion	 that	 significant	 data	
preprocessing	 will	 be	 necessary	 prior	 to	 the	 development	 of	 the	 machine	 learning	
algorithm.		

	

4.3.4. Dataset	preprocessing	
Entire	statistical	analysis	was	done	with	the	purpose	of	understanding	the	dataset	better	
and	 being	 able	 to	 optimize	 the	 preparation	 of	 thereof	 for	 implementation	 of	 the	 AI	
algorithm.	The	analysis	began	by	preparing	the	environment	with	the	necessary	tools	for	
handling	 imbalanced	 data	 and	 Excel	 files.	 The	 dataset,	 which	 contained	 both	 input	
features	and	an	output	variable,	was	then	uploaded	from	an	Excel	file.	The	relevant	input	
features	were	selected	for	analysis,	and	the	output	variable,	representing	the	target	for	
classification,	was	extracted.	This	step	ensured	that	the	data	was	correctly	formatted	and	
ready	for	splitting	into	training	and	testing	subsets.	

To	develop	and	validate	a	predictive	model,	the	dataset	was	divided	into	two	parts:	80%	
was	allocated	for	model	training,	and	the	remaining	20%	was	reserved	for	testing.	A	fixed	
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random	 seed	 was	 used	 to	 ensure	 consistency	 across	 different	 runs	 of	 the	 analysis,	
allowing	for	reproducibility	in	the	results.	

Given	that	the	dataset	exhibited	class	imbalance,	an	advanced	oversampling	technique,	
Adaptive	Synthetic	Sampling	 (ADASYN),	was	applied.	This	method	generates	 synthetic	
samples	 for	 underrepresented	 classes	 by	 creating	 data	 points	 that	 are	 similar	 to	 the	
minority	class	but	slightly	varied,	ensuring	a	more	balanced	distribution.	The	goal	was	to	
equalize	 the	representation	of	all	 target	classes,	which	would	otherwise	 lead	to	biased	
model	 training.	The	 synthetic	data	 generation	process	was	 tailored	 to	 create	 an	 equal	
number	of	samples	for	each	class,	ensuring	that	all	classes	were	sufficiently	represented.	

Following	the	resampling	process,	the	newly	balanced	dataset	was	organized	and	saved	
for	 further	 analysis.	 The	 synthetic	 samples	 and	 the	 target	 labels	 were	 combined	 and	
exported	to	an	Excel	file,	preserving	the	resampled	data	for	future	model	development.	

To	verify	the	effectiveness	of	the	resampling	technique,	the	distribution	of	the	classes	in	
the	 new	 dataset	 was	 assessed.	 The	 analysis	 confirmed	 that	 each	 class	 was	 now	
represented	 equally,	 validating	 the	 success	 of	 the	 synthetic	 sampling	 approach.	 By	
addressing	 the	 issue	 of	 class	 imbalance,	 the	 dataset	 was	 better	 prepared	 for	 model	
training,	ensuring	that	the	subsequent	predictive	models	would	not	be	biased	toward	the	
overrepresented	classes	and	could	produce	more	reliable	and	generalized	predictions.	

	

4.4. ANN model 
The	development	of	 the	classification	model	was	 introduced	with	challenges	primarily	
arising	 from	 significant	 intraclass	 variability,	 which	 adversely	 affected	 predictive	
performance.	 To	 address	 these	 challenges,	 a	 systematic	 approach	 was	 adopted,	
incorporating	both	class	and	parameter	weights	alongside	regularization	techniques	and	
optimized	activation	functions.	This	comprehensive	strategy	was	essential	in	achieving	a	
robust	 and	 reliable	 model	 capable	 of	 accurately	 predicting	 plaque	 progression	 in	
atherosclerosis.	

The	issue	was	characterized	by	a	disproportionate	distribution	of	samples	or	intraclass	
variability	across	classes.	Even	though	the	sample	size	was	consistent	accross	classess,	an	
issue	 arises	 with	 overexpressed	 interclass	 similarity	 and	 lack	 of	 overall	 intraclass	
variability,	 leading	 to	 biased	 predictions,	 where	 the	 model	 favors	 outcomes	 more	
represented	in	a	certain	class.	To	counter	this,	class	weights	were	assigned	to	each	class,	
strategically	focusing	on	enhancing	the	model's	sensitivity	to	the	most	sensitive	class,	that	
being	„insignificant	atherosclerotic	progression“		

Class	weights	were	calculated	based	on	the	inverse	frequency	of	each	class,	reflecting	the	
necessity	 for	 the	 model	 to	 prioritize	 learning	 from	 underrepresented	 samples.	 For	
instance,	class	0	was	assigned	a	weight	of	3.0,	while	classes	1	and	2	received	weights	of	
1.5	and	2.5,	respectively.	By	implementing	these	weights,	the	model	was	empowered	to	
treat	 the	 loss	 function	 as	 a	 more	 balanced	 representation	 of	 the	 underlying	 class	
distribution,	thereby	compensating	for	the	imbalance.		

In	conjunction	with	class	weights,	parameter	weights	were	integrated	into	the	training	
process	 to	 further	 refine	 the	 model's	 learning	 dynamics.	 Parameter	 weights	 were	
assigned	based	on	the	importance	of	each	feature,	which	enabled	the	model	to	prioritize	
more	influential	variables	during	training.	This	adjustment	facilitated	enhanced	learning	
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from	critical	features,	allowing	the	model	to	effectively	distinguish	between	classes.	The	
dual	 implementation	 of	 class	 and	 parameter	 weights	 resulted	 in	 substantial	
improvements	 in	 performance	 metrics,	 such	 as	 accuracy,	 recall,	 and	 F1	 scores,	
particularly	 for	 the	minority	 classes.	The	model's	ability	 to	 correctly	 classify	 instances	
from	these	underrepresented	groups	improved	significantly,	thereby	leading	to	a	more	
equitable	performance	across	all	classes.	

To	further	mitigate	the	risk	of	overfitting—a	common	issue	in	machine	learning	where	
the	model	 learns	 the	 noise	 in	 the	 training	 data	 rather	 than	 the	 underlying	 patterns—
regularization	 techniques	 were	 employed.	 L2	 regularization	 (also	 known	 as	 weight	
decay)	 was	 incorporated	 into	 the	 loss	 function,	 which	 penalizes	 large	 weights	 and	
discourages	the	model	from	fitting	noise	in	the	training	data.	This	technique	is	particularly	
beneficial	 in	 high-dimensional	 spaces,	 where	 overfitting	 is	 prevalent	 due	 to	 the	
abundance	 of	 features	 relative	 to	 the	 number	 of	 training	 samples.	 By	 applying	 L2	
regularization,	the	model	was	encouraged	to	learn	a	simpler	representation	of	the	data,	
which	 improved	 generalization	 to	 unseen	 data.	 Regularization	 not	 only	 enhanced	 the	
model’s	robustness	but	also	led	to	improved	interpretability	of	the	learned	parameters.	
The	model	was	able	to	focus	on	the	most	relevant	features	while	minimizing	the	impact	
of	 irrelevant	or	redundant	 features,	 thereby	streamlining	the	decision-making	process.	
This	strategic	modification	was	pivotal	 in	enhancing	the	model's	overall	reliability	and	
predictive	capability.	

The	choice	of	activation	functions	significantly	influenced	the	model’s	performance	and	
learning	efficiency.	The	Rectified	Linear	Unit	(ReLU)	activation	function	was	utilized	in	
the	 hidden	 layers,	 promoting	 faster	 convergence	 and	 allowing	 the	 model	 to	 capture	
complex	relationships	within	the	data	effectively.	ReLU	addresses	the	vanishing	gradient	
problem,	which	 is	 common	 in	 traditional	 activation	 functions	 like	 sigmoid	or	 tanh,	 by	
maintaining	 non-zero	 gradients	 for	 positive	 input	 values.	 This	 characteristic	 enables	
deeper	networks	to	learn	more	efficiently,	as	the	gradients	do	not	diminish	as	they	are	
backpropagated	 through	 the	 network	 layers.	 The	 softmax	 activation	 function	 was	
employed	 in	 the	 output	 layer,	 generating	 a	 probability	 distribution	 across	 the	 target	
classes.	This	approach	allowed	for	interpretable	output,	where	the	class	with	the	highest	
probability	score	was	selected	as	the	model's	prediction.	The	softmax	function	effectively	
normalized	 the	output	scores,	making	 it	easier	 to	assess	 the	relative	confidence	of	 the	
model	in	its	predictions.	The	combination	of	ReLU	and	softmax	functions	ensured	that	the	
model	was	not	only	capable	of	learning	complex	patterns	but	also	provided	a	probabilistic	
framework	for	decision-making.	

Two	architectures	were	 intensively	 tested	 to	determine	 the	 impact	of	hyperparameter	
adjustment	and	architecture	remodeling	on	the	prediction	results.		
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Table	23.	Comparison	of	key	ANN	parameters	between	the	two	developed	architectures	

Parameter	 Definitio
n	

Purpose	 Impact	on	
Training	

Mechanis
m	

Architectur
e	1	VS	2	

Regularizatio
n	Strength	

Controls	
penalty	on	
weights	
for	
complexit
y	

Prevent	
overfittin
g	

Affects	model	
complexity;	
high	=	
underfit,	low	
=	overfit	

Adds	
penalty	to	
the	loss	
function	

L2	(0.01)	
VS	

L2	(0.0001)	

Training	
Duration	
(Epochs)	

Number	
of	
complete	
passes	
over	the	
dataset	

Determin
e	learning	
time	

Low	=	
underfit,	high	
=	overfit	

Each	epoch	
involves	
forward	
and	
backward	
pass	

100	epochs	
VS	

400	epochs	

Batch	Size	 Number	
of	
samples	
processed	
before	
weight	
updates	

Controls	
update	
frequency	

Small	=	noisy	
but	better	
generalizatio
n,	large	=	
smoother	but	
potential	
overfit	

Subset	of	
data	used	
for	gradient	
computatio
n	

Batch	size	
16	
VS	

Batch	size	8	

	

Regularization	strength	is	a	critical	hyperparameter	that	plays	a	vital	role	in	managing	
model	complexity.	Its	main	purpose	is	to	prevent	overfitting,	which	occurs	when	a	model	
learns	 not	 only	 the	 underlying	 patterns	 in	 the	 training	 data	 but	 also	 the	 noise.	
Regularization	achieves	this	by	adding	a	penalty	to	the	loss	function,	which	discourages	
the	 model	 from	 assigning	 excessive	 importance	 to	 any	 particular	 weight.	 When	
regularization	 strength	 is	 high,	 the	 model	 is	 forced	 to	 simplify,	 which	 can	 lead	 to	
underfitting;	in	other	words,	it	may	not	learn	enough	from	the	data.	Conversely,	when	the	
regularization	strength	is	low,	the	model	can	become	too	complex,	capturing	not	just	the	
essential	 features	of	 the	data	but	also	the	random	fluctuations,	resulting	 in	overfitting.	
Different	types	of	regularization,	such	as	L1	and	L2,	have	unique	characteristics,	with	L1	
potentially	leading	to	sparse	solutions	(many	weights	becoming	zero)	and	L2	shrinking	
all	weights	but	retaining	more	features.	Overall,	the	choice	of	regularization	strength	is	
crucial	as	it	directly	impacts	the	model's	generalization	ability.	The	choice	of	a	lower	L2	
regularization	 strength	 (0.001	 VS	 0.1)	 may	 significantly	 affect	 the	 model's	 ability	 to	
generalize	beyond	the	training	data.	Regularization	is	intended	to	prevent	overfitting	by	
penalizing	 overly	 complex	models.	 A	 lower	 L2	 regularization	 strength	means	 that	 the	
model	is	less	constrained,	allowing	it	to	assign	larger	weights	to	features.	While	this	can	
help	the	model	capture	more	nuances	in	the	training	data,	it	may	also	result	in	a	higher	
risk	of	overfitting.	Consequently,	the	model	might	perform	well	on	the	training	dataset	
but	struggle	with	unseen	data	due	to	its	excessive	reliance	on	specific	patterns	that	do	not	
hold	 in	a	broader	context.	Therefore,	while	a	 lower	regularization	strength	can	 lead	to	
improved	 performance	 during	 training,	 it	 can	 ultimately	 compromise	 the	 model’s	
generalization	ability.	
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Training	duration,	measured	in	epochs,	refers	to	how	many	times	the	model	is	exposed	to	
the	entire	training	dataset.	The	main	goal	of	determining	the	right	number	of	epochs	is	to	
ensure	that	the	model	learns	effectively	from	the	data.	If	the	number	of	epochs	is	too	low,	
the	model	may	not	 have	 enough	opportunities	 to	 learn,	 resulting	 in	 underfitting.	 This	
means	the	model	fails	to	capture	essential	patterns	within	the	data.	On	the	other	hand,	too	
many	epochs	can	lead	to	overfitting,	where	the	model	becomes	excessively	tailored	to	the	
training	data	and	performs	poorly	on	unseen	data.	To	strike	the	right	balance,	validation	
loss	during	training	is	monitored	and	strategies	like	early	stopping	employed,	which	halts	
training	when	performance	on	a	validation	set	begins	to	degrade.	Thus,	training	duration	
is	about	finding	the	sweet	spot	where	the	model	learns	adequately	without	memorizing	
the	 training	 data.	 By	 opting	 for	 a	 longer	 training	 duration,	 the	 model	 has	 more	
opportunities	to	learn	from	the	training	data.	This	extended	exposure	can	be	beneficial,	
particularly	if	the	training	set	is	complex	or	large.	However,	it	also	increases	the	risk	of	
overfitting,	especially	 if	 the	model	 is	not	regularized	adequately.	Monitoring	validation	
performance	is	crucial	during	this	phase	to	ensure	that	the	model	is	improving	its	ability	
to	generalize	rather	than	merely	memorizing	the	training	examples.	

Batch	size	is	the	number	of	training	samples	processed	before	the	model's	weights	are	
updated.	 It	directly	 influences	how	the	model	 learns	during	 training.	Choosing	a	 small	
batch	 size	 results	 in	more	 frequent	updates	 to	 the	model's	weights,	which	 can	 lead	 to	
noisier	gradient	estimates.	This	noise	can	sometimes	help	the	model	generalize	better,	as	
it	introduces	variability	in	the	training	process.	However,	smaller	batches	can	also	slow	
down	training	since	more	iterations	are	needed	to	complete	an	epoch.	In	contrast,	a	larger	
batch	size	means	fewer	updates	per	epoch,	leading	to	smoother	gradient	estimates.	While	
this	can	accelerate	training	and	make	better	use	of	computational	resources	(like	GPUs),	
it	may	also	lead	to	poorer	generalization,	as	the	model	could	get	stuck	in	sharp	minima	
that	 don't	 perform	 well	 on	 unseen	 data.	 Therefore,	 the	 choice	 of	 batch	 size	 should	
consider	 the	 trade-offs	 between	 computational	 efficiency	 and	 model	 performance.	
Choosing	 a	 smaller	 batch	 size	means	 the	model	 updates	 its	weights	more	 frequently.	
While	this	can	introduce	beneficial	noise	into	the	gradient	estimates—potentially	aiding	
in	convergence—it	also	means	that	each	update	might	be	less	stable.	The	noise	can	help	
escape	local	minima	but	can	also	slow	down	the	convergence	process	as	the	model	may	
take	 longer	 to	 find	 the	optimal	 solution.	Additionally,	because	 smaller	batches	 require	
more	iterations	to	complete	an	epoch,	this	can	significantly	extend	the	total	training	time.	

The	 decisions	 made	 in	 the	 second	 architecture	 reflect	 a	 careful	 balance	 between	
improving	 model	 performance	 and	 managing	 the	 risks	 associated	 with	 overfitting.	 A	
lower	 L2	 regularization	 strength,	 while	 potentially	 enhancing	 training	 performance,	
could	hinder	the	model's	generalization	ability.	Meanwhile,	the	combination	of	a	longer	
training	duration	and	a	smaller	batch	size	facilitates	a	more	nuanced	learning	process	but	
at	the	cost	of	increased	training	time.	Together,	these	choices	highlight	the	importance	of	
tuning	 hyperparameters	 thoughtfully	 to	 achieve	 a	well-balanced	model	 that	 performs	
well	on	both	training	and	unseen	data.	

	

4.4.1. ANN	performance	evaluation	
In	 this	 section,	 the	 performance	 of	 the	 developed	 artificial	 neural	 network	 (ANN)	 is	
evaluated	 by	 examining	 the	 impact	 of	 incorporating	 class	 and	 feature	weights	 during	
training.	The	objective	is	to	assess	how	these	adjustments	affect	the	model's	performance	
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in	 terms	 of	 loss	 and	 accuracy,	 particularly	 in	 the	 context	 of	 an	 imbalanced	 dataset.	 A	
comparative	analysis	was	conducted	involving	two	distinct	training	configurations	for	our	
ANN:	the	standard	model	without	any	weighting	and	the	enhanced	model	that	utilized	
class	and	feature	weights.	The	standard	model	served	as	a	baseline,	while	the	enhanced	
model	aimed	to	address	the	inherent	challenges	posed	by	class	imbalance	and	to	amplify	
the	influence	of	critical	features	identified	during	the	initial	analysis.	

Class	weights	were	computed	based	on	the	frequency	of	each	class	in	the	dataset.	This	
approach	 ensures	 that	 the	 model	 pays	 more	 attention	 to	 underrepresented	 classes,	
effectively	 countering	 the	 bias	 that	 can	 occur	 when	 training	 on	 imbalanced	 data.	 By	
assigning	higher	weights	to	these	classes,	the	model	is	encouraged	to	learn	more	from	the	
less	 frequent	examples,	 thus	 improving	 its	overall	performance.	Feature	weights	were	
employed	to	prioritize	the	most	influential	input	parameters	during	the	training	process.	
This	 strategy	 enhances	 the	 model's	 ability	 to	 focus	 on	 features	 that	 significantly	
contribute	to	class	differentiation,	potentially	leading	to	a	more	nuanced	understanding	
of	the	underlying	patterns	within	the	data.	

In	 analyzing	 the	 loss	 curves,	 the	 standard	 ANN	 configuration	 displayed	 significant	
fluctuations	 throughout	 the	 training	 epochs.	 This	 instability	 suggested	 that	 the	model	
struggled	to	find	a	reliable	convergence	point,	which	is	often	indicative	of	overfitting—
where	the	model	performs	well	on	training	data	but	poorly	on	validation	data.	Conversely,	
the	implementation	of	class	and	feature	weights	resulted	in	a	markedly	smoother	decline	
in	both	training	and	validation	loss.	The	reduced	variability	in	the	loss	curves	reflects	the	
model’s	improved	stability,	suggesting	that	the	weights	helped	to	regularize	the	training	
process	and	enabled	the	ANN	to	generalize	better	to	unseen	data.	

	

Figure	35.	Loss	over	epochs	graph	for	architecture	1	

The	first	achitecture	employed	an	early	stopping	method	and	the	training	was	halted	at	
epoch	 50	 as	 convergence	 of	 training	 and	 validation	 loss	 was	 achieved.	 However,	 the	
training	and	validation	curves	converget	at	loss	of	»0.6	which	is	considered	high.	
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Figure	36.	Loss	over	epochs	graph	for	architecture	2	

The	second	architecture	did	not	include	the	early	stoping	criterion	and	the	training	was	
conducted	up	to	300	epochs.	Even	though	the	loss	curves	did	not	converge	as	in	the	first	
case,	 the	 local	minima	was	achieved	at	»0.4	 for	 the	 training	dataset	 and	»0.25	 for	 the	
validation	 dataset.	 Hence,	 the	 predictive	 and	 generalization	 capabilities	 of	 the	 second	
model	were	shown	to	improve.		

	

	

Figure	37.	Accuracy	plot	for	architecture	1	

The	 accuracy	 over	 epochs	 plot	 for	 the	 first	 scenario	 is	 characteristic	 for	 significant	
overfitting.	 The	 abrupt	 peaks	 in	 the	 curve	 indicate	 that	 the	 accuracy	 is	 unstable	 over	
epochs	and	even	though	the	model	converges	in	terms	of	loss,	its	predictive	accuracy	is	
very	low	(»0.7).	
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Figure	38.	Accuracy	plot	for	architecture	2	

.	

Compared	 to	 the	accuracy	plot	of	 the	 first	 instance,	 the	accuracy	plot	 for	 the	adjusted	
architecture	is	much	smoother	and	training	and	validation	accuracy	converge	at	above	
0.9	indicating	very	high	and	trustworth	predictive	capability	of	the	model.		

The	 most	 compelling	 evidence	 of	 the	 performance	 improvement	 emerged	 from	 the	
accuracy	analysis.	The	standard	model	achieved	a	peak	validation	accuracy	of	only	0.68,	
indicating	that	a	significant	portion	of	predictions	were	incorrect,	particularly	for	the	less	
frequent	 classes.	 However,	 when	 class	 and	 feature	 weights	 were	 introduced,	 the	
validation	accuracy	soared	to	0.95.	This	dramatic	 increase	of	27	percentage	points	not	
only	signifies	a	substantial	enhancement	in	predictive	performance	but	also	illustrates	the	
model's	newfound	capability	to	accurately	classify	instances	across	all	classes,	including	
those	that	were	previously	misclassified.	

Table	24.	Performance	metrics	comparison	

Performance	metric	 Score	architecture	1	 Score	architecture	2	
Accuracy	 0.681	 0.954	
Recall	 0.679	 0.954	
F1	score	 0.684	 0.934	
MCC	 0.523	 0.871	
Sensitivity	 0.571	 1.0	 0.714	 1.0	 0.857	 1.000	
Specificity	 0.733	 0.933	 1.0	 1.0	 1.0	 0.929	

	

The	 improvement	 in	 accuracy	 (Table	 24)	 underscores	 the	 effectiveness	 of	 utilizing	
weights,	as	it	highlights	the	model's	enhanced	ability	to	discern	between	similar	classes,	
which	is	particularly	vital	in	medical	applications	where	accurate	classifications	can	have	
critical	implications.	

In	order	to	evaluate	the	performance	of	the	ANN	in	more	detail,	ROC	curves,	AUC	scores	
(Figure	39.)	and	precision-recall	curves	(.)	were	analzed	for	all	3	classes	durring	training.		
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Figure	39.	ROC	curves	for	each	class	

An	AUC	 of	 0.94,	 0.96,	 and	 0.98	 for	 the	 three	 classes	 of	 plaque	 progression	 prediction	
indicates	 the	 model's	 excellent	 discriminatory	 performance	 across	 all	 stages	 of	
progression.	The	AUC	of	0.94	suggests	that	the	model	is	highly	effective	in	distinguishing	
the	first	class	of	plaque	progression,	capturing	the	critical	risk	factors	associated	with	it.	
The	AUC	of	 0.96	 for	 the	 second	 class	 indicates	 an	 even	 stronger	 capability	 to	 identify	
patients	at	risk,	implying	improved	sensitivity	and	specificity	in	detecting	subtle	changes	
in	 plaque	 characteristics.	 Lastly,	 the	 AUC	 of	 0.98	 for	 the	 third	 class	 highlights	 an	
exceptional	 classification	 ability,	 demonstrating	 the	 model's	 capacity	 to	 accurately	
identify	patients	at	the	highest	risk	of	plaque	progression.	These	high	AUC	values	signify	
that	 the	 model	 not	 only	 excels	 in	 classifying	 plaque	 progression	 stages	 but	 also	
underscores	its	potential	application	in	clinical	settings	for	personalized	risk	assessment	
and	management.	The	impressive	performance	across	all	classes	suggests	that	the	model	
can	 effectively	 assist	 healthcare	professionals	 in	making	 informed	decisions	 regarding	
patient	 care	 and	 interventions,	 ultimately	 contributing	 to	 improved	 outcomes	 in	
cardiovascular	health.	
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Figure	40.	Precision-recall	curves	for	each	class	

The	 average	 precision	 scores	 of	 0.90,	 0.93,	 and	 0.97	 for	 the	 precision-recall	 curves	
indicate	a	compelling	trend	in	the	model's	performance	across	the	three	classes	of	plaque	
progression	prediction.	These	scores	reflect	the	model's	capacity	to	effectively	distinguish	
between	true	positive	instances	and	false	positives,	showcasing	an	increase	in	precision	
as	the	severity	of	plaque	progression	escalates.	In	clinical	terms,	high	precision	is	critical,	
as	 it	suggests	that	when	the	model	predicts	a	positive	outcome,	 it	 is	highly	likely	to	be	
correct.	A	precision	of	0.90	indicates	that	90%	of	the	identified	positive	cases	in	the	first	
class	are	true	positives,	while	0.97	in	the	most	advanced	class	suggests	an	excellent	ability	
to	 identify	 those	 at	 greatest	 risk	 with	 minimal	 misclassification.	 This	 improvement	
highlights	the	model's	potential	utility	in	risk	stratification,	enabling	healthcare	providers	
to	focus	interventions	on	those	who	are	more	likely	to	benefit	from	them.	Moreover,	the	
increasing	precision	suggests	that	the	model	not	only	identifies	patients	effectively	but	
also	provides	 confidence	 in	 its	 predictions.	 This	 characteristic	 is	 essential	 in	 a	 clinical	
setting,	 where	 false	 positives	 can	 lead	 to	 unnecessary	 stress	 and	 interventions	 for	
patients.	 As	 the	model	 approaches	 a	 precision	 score	 of	 1.0,	 it	 indicates	 an	 exemplary	
performance,	which	could	significantly	enhance	decision-making	processes	in	managing	
plaque	 progression	 and	 related	 cardiovascular	 risks.	 Ultimately,	 these	 precision-recall	
scores	 underscore	 the	 potential	 of	 the	 predictive	 model	 in	 a	 healthcare	 context,	
advocating	for	its	application	in	clinical	practices	for	improved	outcomes	in	patients	at	
risk	of	significant	cardiovascular	events	associated	with	plaque	progression.		

	

4.4.2. Comparison	to	state	of	the	art	
Han	 et	 al.	 (2020)	 (Han	 et	 al.,	 2020)	 integrated	 coronary	 computed	 tomography	
angiography-determined	qualitative	and	quantitative	plaque	features	within	a	machine	
learning	 (ML)	 framework	 to	 determine	 its	 performance	 for	 predicting	 rapid	 coronary	
plaque	 progression	 (RPP).	 They	 have	 used	 CTA	 data	 from	 1083	 patients	 and	 tested	
several	machine	learning	algorithms	to	achieve	an	AUC	of	0.618	for	the	model	where	only	
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clinical	 and	 laboratory	 variables	 were	 used	 and	 0.833	 when	 clinical	 and	 laboratory	
variables	were	 combined	with	 qualitative	 and	 quantitative	 CT	 variables.	 A	 significant	
aspect	of	their	methodology	was	the	proactive	approach	to	address	feature	importance	
within	their	dataset.	Predictive	classifiers	for	prediction	of	RPP	were	developed	using	an	
ensemble	classification	approach	(“boosting”)	where	a	set	of	weak	base	classifiers	can	be	
combined	 to	 create	 a	 single	 strong	 classifier	 by	 iteratively	 adjusting	 their	 appropriate	
weighting	according	to	misclassifications.		

Rosandeel	et	al.	(2018)	(van	Rosendael	et	al.,	2018)		aimed		to	investigate	whether	a	ML	
score,	 incorporating	 only	 the	 16	 segment	 coronary	 tree	 information	 derived	 from	
coronary	 computed	 tomography	 angiography	 (CCTA),	 provides	 enhanced	 risk	
stratification	 compared	with	 current	 CCTA	based	 risk	 scores.	 In	 a	 study	 that	 involved	
8844	patients	with	no	known	history	of	CAD	and	employed	a	methodology	where	a	total	
35	CCTA	variables	(stenosis	severity	and	plaque	composition	considering	the	16	coronary	
segments,	 2	 variables	 for	 posterolateral	 branch	 when	 dominance	 was	 unknown	 and	
coronary	artery	dominance)	were	incorporated	in	the	machine	learning	score.	A	machine	
learning	algorithm	based	on	XGBoost	achieved	an	AUC	of	0.84.	

In	 a	 previous	 study	 (Spahić	 et	 al.,	 2023)	 we	 have	 conducted	 using	 data	 mining	 and	
artificial	 neural	 networks	 to	 predict	 coronary	 plaque	 progression	 the	 aim	 was	 to	
determine	 the	 risk	 and	 pace	 of	 progression	 of	 CATS,	 based	 on	 lipid-species,	 anti-
thrombotic	drugs,	 clinical	data,	 risk	 factors	 and	general	biomarkers.	The	methodology	
relied	 on	 feature	 selection	 using	 ReliefF,	 MRMR	&	wrapper	 techniques	 followed	 by	 a	
simple	 architecture	 of	 ANN.	 The	 overall	 achieved	 accuracy	 of	 0.81	 was	 satisfactory,	
however	the	classification	power	of	the	developed	system	was	significantly	hindered	by	
low	 specificity	 indicating	 that	 the	 ANN	 does	 not	 generalize	 well	 for	 the	 insignificant	
plaque	 progression	 samples.	 This	 problem	 persisted	 across	 all	 iterations	 of	 the	 ANN	
considering	 significant	 class	 imbalance	 of	 the	 dataset	 where	 only	 22%	 of	 the	 data	
corresponded	to	the	minority	class.	

Corti	 et	 al.,	 (2023)	 have	 developed	 a	 surrogate	 model	 to	 be	 coupled	 with	 FEM	 as	 a	
substitute	for	the	previously	employed	agent	based	model	to	reduce	the	computational	
cost	by	preserving	the	modeling	accuracy.	The	surrogate	models	were	(i)	used	to	explore	
the	relation	between	the	ABM	parameters	and	the	global	outputs,	and	(ii)	employed	in	the	
calibration	 process,	 in	 which	 the	 selected	 ABM	 parameters	 were	 calibrated	 through	
genetic	 algorithm	optimization.	 The	developed	 surrogate	model	 achieved	 an	R2	 in	 the	
range	 from	 0.985-0.995	 indicating	 high	 fidelity	 and	 potential	 to	 substitute	 the	
computationally-intensive	ABM.		
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Table	25.	State	of	the	art	benchmarking	

Aspect	 Rosandeel	et	
al.	(2018)	

Han	et	al.	
(2020)	

Spahic	et	al.		
(2023)	

Corti	et	al.	
(2023)	

Model	in	this	
study	

Model	
Structure	

XGBoost	 Ensemble	
models	

Simple	ANN	
with	

employed	
regularizatio

n	

Surrogate	
model	based	

on	
physiological	

data	

Advanced	
ANN	with	
ABM	

parameters	

Moderate	
complexity,	
less	dynamic	

Employing	an	
iterative	
LogitBoost	
algorithm	

Captures	
complex	
feature	

interactions	

Limited	in	
complex	
feature	

interactions	

Captures	
complex	
feature	

interactions	

Feature	
Engineering	

CT	images	
and	CCTA	
scores	

clinical	and	
laboratory	
variables	&	
CT	variables	

Feature	
selection	

using	ReliefF,	
MRMR	&	
wrapper	
technigues	

Physiological	
and	imaging	

data	

Includes	
simulation-
based	ABM	
parameters	

Feature	
importance	
score	

assessment	

information-
gain	

attribute	
ranking	

SMOTE	
algorithm	to	
address	class	
imbalance	

Focuses	on	
physiological	
modeling	

ADASYN	
class	

imbalance	
mitigation	
and	feature	
weighing	

Performance	
Metrics	

AUC	
0.84	

AUC	
0.618	–	0.833	

Accuracy:	
81.81%,	
Sensitivity:	
96%,	

Specificity:	
37.5%	

R2	
0.985-0.995	

Accuracy:	
95.4%,	

Sensitivity:	
95.2%,	

Specificity:	
97.6%	.	

Computational	
Efficiency	

Moderate	
resource	

requirements	

Moderate	
resource	

requirements	

Scalable	
architecture	
with	lower	
resource	
demands	

Requires	
significant	
resources	

Low	
resource	

requirement	

Feasible	for	
many	settings	

Resource-
intensive	
becuase	of	
image	

processing	

Suitable	for	
clinical	

applications	

May	limit	
practical	

applicability	

Feasible	for	
many	
settings	

	

4.5. Integration into DECODE cloud platform 
Through	the	seamless	integration	of	ABM	and	AI	into	the	DECODE	cloud	platform	via	an	
API,	the	system	will	be	able	to	harness	the	best	of	both	worlds:	the	detailed	simulation	of	
biological	processes	and	the	predictive	power	of	AI.	To	achieve	this	integration,	a	robust	
API	framework	will	be	developed,	allowing	the	DECODE	platform	to	interface	with	both	
the	ABM	and	AI	systems.	The	API	will	serve	as	a	bridge,	handling	the	flow	of	data	between	
the	cloud-based	platform,	the	simulation	models,	and	healthcare	providers.	By	employing	
adaptable	architectures,	the	system	ensures	scalability,	reliability.	
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The	ABM	module	simulates	the	behavior	of	individual	agents	(such	as	cells,	proteins,	or	
plaques)	 within	 the	 arterial	 environment,	 capturing	 the	 dynamic	 interactions	 that	
contribute	 to	 disease	 progression,	 particularly	 in	 conditions	 like	 atherosclerosis.	 The	
integration	 of	 ABM	 into	 DECODE	will	 involve	 deploying	 the	model	 on	 the	 cloud.	 This	
allows	for	the	detailed	and	resource-intensive	simulations	required	for	accurate	modeling	
of	biological	processes.	Once	the	ABM	is	integrated,	the	API	will	facilitate	the	following	
workflow:	

• Input	of	patient-specific	data:	Clinical	data,	such	as	imaging	results,	biochemical	
markers,	and	patient	demographics,	will	be	submitted	through	the	API.	This	data	
will	be	pre-processed	by	the	DECODE	platform	and	then	sent	to	the	ABM	module	
for	simulation.	

• Execution	 of	 ABM	 simulations:	 The	 API	 will	 initiate	 the	 simulation	 of	 disease	
progression	within	the	ABM,	simulating	how	individual	agents	behave	and	interact	
in	 the	 vascular	 system.	 The	 model	 will	 run	 in	 parallel,	 allowing	 multiple	
simulations	to	take	place	concurrently.	

• Return	of	simulation	results:	The	API	will	return	the	results	of	these	simulations	
to	the	DECODE	platform,	where	the	data	can	be	analyzed,	visualized,	and	compared	
with	patient	data	to	enhance	diagnosis	or	treatment	planning.	This	could	include	
insights	into	plaque	progression,	risk	of	rupture,	and	treatment	outcomes.	

The	 integration	of	AI	models	adds	an	essential	 layer	of	predictive	power	and	machine	
learning	to	the	DECODE	platform.	By	 leveraging	AI	algorithms,	 the	system	can	process	
large	datasets,	identify	complex	patterns,	and	generate	patient-specific	predictions	that	
evolve	over	time.	AI	is	trained	on	multimodal	datasets,	combining	clinical	data,	genetic	
information,	and	imaging	results	to	predict	plaque	progression,	intervention	success,	and	
disease	outcomes.	The	integration	of	AI	follows	a	similar	workflow	facilitated	by	the	API:	

• Data	input	and	preprocessing:	The	DECODE	platform	will	use	the	API	to	feed	the	
AI	models	with	the	same	patient-specific	data	utilized	by	the	ABM,	including	any	
new	data	collected	over	time.	

• AI-driven	 predictions:	 The	 AI	module,	 powered	 by	 advanced	machine	 learning	
algorithms,	will	analyze	the	data	to	predict	atherosclerotic	plaque	behavior	and	
assess	the	risk	of	peripheral	artery	disease	progression.	The	API	ensures	that	the	
AI	 model	 can	 continuously	 update	 predictions	 as	 new	 patient	 data	 becomes	
available,	making	the	platform	adaptive	and	real-time.	

• Feedback	 to	 DECODE	 platform:	 The	 API	 will	 facilitate	 the	 return	 of	 AI-driven	
insights,	 which	 can	 then	 be	 displayed	 to	 clinicians	 via	 the	 DECODE	 interface,	
supporting	decision-making	with	precise,	data-driven	guidance.	

The	 combined	 integration	 of	 ABM	 and	 AI	 allows	 for	 a	 powerful	 synergy	 within	 the	
DECODE	 platform.	 While	 ABM	 provides	 mechanistic	 insights	 into	 the	 behavior	 of	
biological	agents,	AI	enhances	the	system	by	learning	from	vast	amounts	of	data,	offering	
predictions	 that	 can	 be	 continuously	 refined.	 The	 API	 will	 act	 as	 the	 central	 conduit,	
enabling	the	smooth	exchange	of	data	between	these	two	models.	For	example,	the	results	
from	 ABM	 simulations	 can	 serve	 as	 input	 features	 for	 the	 AI	 model,	 further	 refining	
predictions	and	offering	a	holistic	understanding	of	patient-specific	disease	progression.	
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5. Conclusion 
In	 this	 research,	 the	 transformative	 potential	 of	 artificial	 intelligence	 and	 agent-based	
modeling	 in	 understanding	 and	 managing	 cardiovascular	 diseases,	 particularly	
atherosclerosis,	 was	 investigated.	 Agent-based	 modeling	 has	 provided	 a	 robust	
framework	 for	 simulating	 complex	 biological	 interactions	 and	 understanding	 the	
multifaceted	nature	of	cardiovascular	disease	development.	By	modeling	the	behaviors	of	
individual	 agents,	 such	 as	 cells	 and	 tissues,	 ABM	 has	 elucidated	 critical	 mechanisms	
underlying	 plaque	 formation	 and	 progression,	 revealing	 insights	 that	 could	 inform	
targeted	 therapeutic	 strategies.	 The	 findings	 demonstrate	 that	 AI,	 through	 advanced	
machine	learning	and	deep	learning	techniques,	significantly	enhances	the	early	detection	
of	atherosclerosis	and	improves	risk	stratification	by	analyzing	large	and	diverse	datasets	
from	electronic	health	records,	medical	imaging,	and	genetic	profiles.	The	integration	of	
AI	has	shown	the	capacity	to	identify	patterns	and	predict	disease	progression	with	a	level	
of	 accuracy	 that	 can	 surpass	 traditional	 methods,	 thereby	 offering	 new	 avenues	 for	
personalized	patient	care.		

However,	 this	 research	 also	 highlighted	 the	 inherent	 limitations	 associated	with	 both	
methodologies.	Issues	related	to	data	quality,	model	interpretability,	and	the	complexity	
of	biological	systems	underscore	the	need	for	ongoing	refinement	and	validation	of	these	
models.	 Overcoming	 these	 challenges	 is	 essential	 for	 ensuring	 the	 reliability	 and	
applicability	of	ABM	and	AI	in	clinical	settings.	

ABM	serves	as	a	powerful	 tool	 for	 simulating	 the	 intricate	 interactions	among	various	
biological	 agents,	 such	 as	 cells	 and	 tissues,	 within	 the	 cardiovascular	 system.	 By	
representing	each	agent	with	unique	behaviors	and	interactions,	ABM	can	illuminate	how	
individual	 cellular	 activities	 contribute	 to	 the	 development	 and	 progression	 of	
cardiovascular	 diseases.	 As	 shown	 in	 this	 research,	 ABM	 has	 successfully	 simulated	
plaque	 progression	 and	 the	 utilized	 methodology	 was	 confirmed	 as	 congruent	 with	
patient	data.	However,	in	cases	where	extreme	variations	of	simulation	parameters	were	
introduced,	the	ABM	failed	in	accurately	capturing	the	plaque	progression	pattern,	and	
provided	results	that	are	unexpected	in	real-world	scenarios.	This	is	due	to	the	fact	that	
the	complexity	of	biological	systems	poses	significant	challenges.	The	intricate	interplay	
of	multiple	 factors,	 including	 genetic,	 environmental,	 and	 lifestyle	 influences,	makes	 it	
difficult	 to	 capture	 the	 full	 spectrum	 of	 interactions	 in	 a	 comprehensive	model.	 ABM	
requires	 extensive	 data	 for	 parameterization	 and	 validation,	 often	 necessitating	 high-
quality	biological	and	clinical	datasets.	These	data	may	not	always	be	readily	accessible,	
and	any	inconsistencies	or	biases	in	the	dataset	can	lead	to	misleading	conclusions.	The	
calibration	of	ABM	is	another	crucial	step,	as	it	requires	meticulous	attention	to	detail	to	
ensure	that	the	model	accurately	reflects	biological	realities.	This	process	can	be	time-
consuming	 and	 resource-intensive,	 often	 requiring	 advanced	 expertise	 and	
computational	 power.	 In	 addition,	 ABM	 outcomes	 can	 be	 sensitive	 to	 variations	 in	
parameters.	Small	changes	 in	how	agents	 interact	can	 lead	to	significant	differences	 in	
model	 predictions,	making	 it	 essential	 for	 researchers	 to	 conduct	 thorough	 sensitivity	
analyses.	 However,	 identifying	 the	most	 impactful	 parameters	 can	 be	 a	 complex	 task,	
often	requiring	extensive	experimentation	and	iteration.	

On	 the	 other	 hand,	 AI	 modeling—especially	 machine	 learning	 and	 deep	 learning	
techniques—has	revolutionized	the	analysis	of	large	datasets	in	cardiovascular	medicine.	
These	algorithms	excel	at	identifying	patterns	within	electronic	health	records,	medical	
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imaging,	 and	genetic	profiles,	 potentially	 leading	 to	 early	detection	and	 improved	 risk	
stratification	for	patients.	Yet,	the	reliance	on	data	quality	is	a	double-edged	sword.	If	the	
input	 data	 is	 incomplete,	 noisy,	 or	 biased,	 the	 AI	model's	 predictions	may	 be	 flawed,	
potentially	 leading	 to	 detrimental	 clinical	 outcomes.	 The	 dynamic	 nature	 of	
cardiovascular	diseases	adds	another	layer	of	complexity.	As	patients	undergo	treatment	
and	lifestyle	changes,	their	cardiovascular	status	evolves.	AI	models	may	struggle	to	keep	
pace	with	these	changes,	leading	to	outdated	or	irrelevant	predictions	that	fail	to	address	
the	patient's	current	health	status.	Surrogate	modeling	opens	an	avenue	for	creating	AI-
based	models	 by	 using	 virtual	 populations	 generated	 by	 running	 simulations	 such	 as	
ABM.	 The	 surrogate	 model	 for	 atherosclerotic	 plaque	 progression	 developed	 in	 this	
research	 was	 based	 on	 artificial	 neural	 networks	 and	 deep	 learning.	 The	 model	 was	
developed	 on	 the	 basis	 of	 a	 comprehensive	 dataset	 created	 for	 the	 purpose	 of	 the	
development	of	the	surrogate	model.	The	dataset	captured	a	landscape	of	patient-specific	
variability	and	provided	significant	variation	for	the	model	to	learn.	The	model	performed	
with	95.4%	accuracy	and	congruency	with	the	ABM	indicating	its	strong	potential	to	be	
used	in	practice.	

While	both	ABM	and	AI	modeling	present	unique	opportunities	to	advance	cardiovascular	
medicine,	 their	 limitations	must	 be	 thoughtfully	 addressed.	 By	 continuing	 to	 advance	
these	 innovative	 approaches,	 we	 can	 significantly	 enhance	 our	 understanding	 of	
cardiovascular	 diseases,	 leading	 to	 more	 precise	 risk	 assessments,	 personalized	
treatment	 plans,	 and	 improved	 patient	 outcomes.	 Creating	 interpretable	 AI	 and	 ABM	
models	is	vital	for	fostering	trust	among	healthcare	providers	and	patients.	Stakeholders	
must	 prioritize	 transparency	 in	 model	 design,	 enabling	 clinicians	 to	 understand	 how	
predictions	are	made	and	empowering	 them	to	explain	 these	 insights	 to	patients.	This	
interpretability	is	essential	for	gaining	acceptance	in	clinical	settings,	where	decisions	are	
often	 based	 on	 a	 combination	 of	 evidence,	 experience,	 and	 patient	 preferences.	
Additionally,	 ethical	 considerations	 must	 be	 at	 the	 forefront	 of	 research	 and	
implementation,	 ensuring	 that	 AI	 and	 ABM	 applications	 do	 not	 perpetuate	 biases	 or	
inequities	in	healthcare.	To	translate	research	findings	into	tangible	benefits	for	patients,	
ongoing	validation	studies	are	necessary.	These	studies	should	 involve	diverse	patient	
populations	 to	 ensure	 that	 models	 are	 generalizable	 and	 effective	 across	 different	
demographics.	Real-world	clinical	trials	can	provide	valuable	feedback	on	the	usability	
and	efficacy	of	AI	and	ABM	systems,	paving	the	way	for	their	adoption	in	everyday	clinical	
practice.	
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