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ПОБОЉШАЊЕ ПЕРФОРМАНСИ БЕЖИЧНИХ ТЕЛЕКОМУНИКАЦИОНИХ 

СИСТЕМА У ПРИСУСТВУ ФЕДИНГА СА ДОМИНАНТНОМ КОМПОНЕНТОМ 

ЕЛЕКТРОМАГНЕТНОГ ТАЛАСА 

 

РЕЗИМЕ  

Предмет истраживања овe докторскe дисертацијe су бежични телекомуникациони 

системи и побољшање њихових перформанси када су присутни брзи фединг, спори фединг 

и међуканална интерференција. При томе, циљ истраживања је да се одреде диверзити 

технике помоћу којих могу да се смање утицаји брзог и спорог фединга на перформансе 

наведеног система. 

У првом делу дисертације разматрани су статистички модели канала у присуству 

Рајсовог фединга и Гама спорог фединга, а затим и к-µ случајни процес. Поред тога, 

разматран је случај када је у бежичним каналима присутан спори Гама фединг и брзи к-μ 

фединг. При томе, аналитички и графички су одређене густина вероватноће (PDF) и 

кумулативна вероватноћа (CDF). 

У другом делу дисертације разматрани су модели макродиверзити система са два 

микродиверзити SC комбинера и једног макродиверзити SC комбинера, у присуству брзог 

к-μ фединга и спорог Гама фединга, односно у присуству к-μ брзог фединга, Гама спорог 

фединга и к-μ међуканалне интерференције, респективно. Аналитички су одређени PDF и 

CDF, а затим дати графички прикази за све прорачунате формуле PDF и CDF, као и 

графички прикази за вероватноћу отказа у зависности од задатог прага. Применом 

разматраног макродиверзити система показано је да се смањењем корелационог 

коефицијента Гама спорог фединга ρ, а без повећања ширине фреквенцијског опсега и без 

повећања снаге на предаји, повећава добитак макро комбиновања. 

На крају, дата су мерења реалног сценарија канала која су показала веома добро 

поклапање са теоријским резултатима. Наиме, добијени резултати за вероватноћу отказа 

показали су оправданост примене диверзити технике, која може бити корисна у 

пројектовању бежичних система у окружењу са ограниченом интерференцијом у смислу 

предвиђања перформанси система и отказа система. 

 

Кључне речи: Рајсов фединг, к-µ брзи фединг, густинa вероватноће (PDF), кумулативна 

вероватноћa (CDF), вероватноћа отказа, SC комбинер, макродиверзити систем, мерењe. 

 



 

 

 

 

IMPROVEMENT OF WIRELESS TELECOMMUNICATION SYSTEM 

PERFORMANCES IN THE PRESENCE OF FADING WITH A DOMINANT 

COMPONENT OF THE ELECTROMAGNETIC WAVE 

 

ABSTRACT  

This doctoral dissertation analyzes wireless communication systems and proposes 

methods to enhance their performance in the presence of long-term fading, short-term fading, 

and co-channel interference (CCI). The aim of the research is to identify diversity schemes 

capable of mitigating the effects of long-term fading and short-term fading on system 

performance. 

In the first part of the dissertation, statistical channel models are considered in the 

presence of Rician fading, Gamma long-term fading, and a к-µ random process. In addition, 

scenarios involving short-term Gamma fading and long-term к-µ fading in wireless channels 

are analyzed. Consequently, the probability density function (PDF) and cumulative density 

function (CDF) are derived analytically and through graphical representations.  

In the second part of the dissertation, models are considered for macro-diversity systems 

with two micro-diversity SC combiners, and one macro-diversity SC combiner in the presence 

of long-term к-µ fading, short-term Gamma fading, that is, in the presence of long-term к-µ 

fading, short-term Gamma fading, and к-µ co-channel interference, respectively. Analytical 

expressions for the PDF and CDF are presented, accompanied by graphical representations of 

these functions and outage probability plots for varying thresholds. Using the discussed macro-

diversity system, it has been shown that by reducing the correlation coefficient of Gamma short-

term fading, ρ, without increasing the frequency range bandwidth, and without increasing 

transmission power, an increase in macro-combining gain is achieved.  

Finally, measurements of real channel scenarios are given, demonstrating a very good 

match with the theoretical results. Namely, the obtained results for the outage probability have 

revealed the justification for using the diversity technique, which can be useful in designing 

wireless systems in settings with limited interference, particularly for system performance 

prediction and outage assessment.  

 

Кey words: Rician fading, к-µ long-term fading, probability density function (PDF), 

cumulative density function (CDF), outage probability, selective combining, macro-diversity 

system, measurement. 
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1. УВОД 

Предмет истраживања овe докторскe дисертацијe су бежични дигитални 

телекомуникациони системи као и њихове перформансе у присуству брзог фединга, 

спорог фединга и интерференције.  

Брзи фединг настаје због простирања електромагнетних сигнала по више путева. 

Због појаве рефлексије, рефракције, савијања и расипања електромагнетног таласа, 

сигнал се простире по више путева и на улазу се појављује већи број компонената 

сигнала. Ове компоненте се сабирају и добија се еквивалентни ускопојасни сигнал са 

случајном променљивом амплитудом. Промена амплитуде сигнала је фединг [80].  

Спори фединг настаје због ефекта сенке. Овај фединг настаје због великих 

препрека између предајника и пријемника. Спори фединг узрокује промену снаге 

сигнала. Када је спори фединг описан Гама расподелом, изрази за перформансе система 

могу се добити у затвореном облику. Веома често је фединг корелисан. Степен 

корелације се одређује корелационим коефицијентом. Корелација деградира диверзити 

добитак. Спори фединг је често корелисан због тога што су две или више антена 

заклоњене са истом препреком. Када корелациони коефицијент иде према јединици, 

нема диверзити добитка. Ово је због тога што се најмањи сигнал догађа истовремено на 

обе антене. Веома је важно разматрати перформансе система када је фединг корелисан. 

Потребно је утврдити како се мења вероватноћа отказа у зависности од корелационог 

коефицијента [50, 51]. 

Међуканалне интерференције настају због преслушавања између удаљених 

канала који раде на истој фреквенцији у различитим ћелијама. Када је међуканална 

интерференцијa корелисана, онда се њен утицај на перформансе система смањује [83]. 

 Брзи фединг, спори фединг и међуканална интерференцијa деградирају 

перформансе система и ограничавају капацитет канала. Такође, Гаусов шум повећава 

вероватноћу грешке и вероватноћу отказа система, мада су фединг и међуканална 

интерференцијa доминантне сметње код бежичних дигиталних комуникационих 

система.  

Постоји више расподела које могу да се употребе да опишу амплитуду сигнала у 

фединг каналу. Расподела може описати анвелопу сигнала у различитим условима [34]. 

У каналу се појављују доминантне компоненте када постоји оптичка видљивост између 

предајника и пријемника. Када околина у којој се простире сигнал има нехомогено поље 

расипања, не важе услови да се може применити централна гранична теорема. У овом 

случају узорци случајног процеса анвелопе се добијају нелинеарном трансформацијом 

узорака случајног процеса анвелопе када је хомогена фединг околина [58]. У каналу 

сигнал може да се простире у оквиру једног или више кластера тако да статистичка 

расподела треба да буде у могућности да опише ову појаву. Снага анвелопе сигнала може 

бити променљива и због појаве спорог фединга. У овом случају снага сигнала треба да 

се опише неком расподелом, и то најчешће Гама расподелом или log-нормалном 

расподелом. Компоненте у фази и квадратури ускопојасног сигнала често имају исте 

снаге, али при простирању сигнала у посебним условима, као што је јоносфера, снаге 

компонената у фази и квадратури су различите [80]. Рејлијева расподела описује сигнал 

у хомогеној средини са једним кластером без доминантне компоненте, док Рајсова 

расподела описује сигнал, такође у хомогеној средини, кад постоји доминантна 

компонента [36]. Вејбулова расподела описује анвелопу сигнала у нехомогеним 

срединама без доминантне компоненте са једним кластером, а α-µ расподела описује 

анвелопу сигнала, такође у нелинеарним срединама, без доминантне компоненте са више 

кластера. Накагами-m расподела описује анвелопу сигнала који се простире кроз канал 
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са више кластера без доминантне компоненте. Када је снага анвелопе променљива, 

фединг се описује са К, КG или проширеном КG расподелом. Када су снаге компонената 

у фази и квадратури различите и када се сигнал простире у оквиру једног кластера, 

анвелопа сигнала се може описати Накагами-q расподелом, а када се сигнал простире у 

оквиру више кластера, онда се анвелопа сигнала може описати -μ расподелом. Када 

постоји више доминантних компоненти и сигнал се простире кроз канал са два или више 

кластера, анвелопа сигнала се може описати са к-μ расподелом. Када је средина 

простирања нехомогена и не могу се применити услови централне граничне теореме, 

онда се анвелопа може описати са α-к-µ расподелом [28, 58, 101].  

За моделовање фединг канала може да се користи Рејлијевa, Рајсовa, Накагами, к-

μ расподела.  

Рејлијева расподела може описати анвелопу сигнала у каналима где нема 

доминантне компоненте, средина је хомогена и сигнал се простире у оквиру једног 

кластера. Квадрат Рејлијеве случајне променљиве једнак је збиру квадрата две независне 

Гаусове случајне променљиве које имају средње вредности нула и исте варијансе [11, 13, 

14, 24, 34, 58, 65, 79, 80, 81, 105].  

Вејбулова расподела може да се употреби да опише анвелопу сигнала у 

нехомогеним бежичним каналима где се не може из неких разлога применити централна 

гранична теорема. Централна гранична теорема се не може применити у случајевима 

када мањи број компонената сигнала не стижу у пријемник или су амплитуде 

компонената веома различите. Узорци Вејбуловог случајног процеса се могу добити 

нелинеарном трансформацијом Рејлијевог случајног процеса. Овај резултат може да се 

употреби за израчунавање вероватноће грешке и вероватноће отказа бежичног 

дигиталног телекомуникационог система који ради у Вејбуловом фединг каналу и 

присутна је Вејбулова међуканална интерференцијa. Код ових система је количник 

анвелопа корисног сигнала и међуканалне интерференције важна мера перформанси 

система помоћу које се код интерференцијом ограничених канала може одредити 

вероватноћа отказа, вероватноћа грешке и капацитет канала. Уколико се примени 

селективни комбинер са два улаза, излазни сигнал из овог пријемника једнак је сигналу 

са оног улаза који је већи. Овај резултат може да се искористи за одређивање вероватноће 

отказа релејних система са две деонице који раде у каналима са Вејбуловим федингом 

[12, 50, 58, 80].  

Када се разматра симулација статистичких карактеристика Рајсовог случајног 

процеса, Рајсовом расподелом може да се опише анвелопа сигнала у каналу где постоје 

више скетеринг компонената и једна доминантна компонента. Скетеринг компоненте 

имају приближно исте амплитуде које су значајно мање од амплитуде доминантне 

компоненте. Број скетеринг компонената је довољан тако да важи централна гранична 

теорема. Анвелопа еквивалентног сигнала на улазу у пријемник има Рајсову густину 

вероватноће. 

Накагами расподела може се употребити да опише анвелопу сигнала у фединг 

каналима где нема доминантне компоненте сигнала и простире се преко више кластера 

и поље расипања је хомогено тако да важи централна гранична теорема [53, 72]. Ова 

расподела има параметар m који је сразмеран са бројем кластера у пропагационом 

каналу. За веће вредности параметра m, Накагами-m фединг је мање оштар. Кумулативна 

вероватноћа је једнака вероватноћи отказа бежичног телекомуникационог система који 

ради у Накагами-m каналу. Помоћу Накагами-m n-тог момента могу да се одреде 

моменти Накагами-m случајног процеса. Први момент се рачуна тако што се за n узме 

вредност 1. Други момент се одређује тако што се за n узме вредност 2.  

к-µ расподела има два параметра к и µ. Параметар к је једнак количнику снаге 

доминантне компоненте и снаге скeтеринг компонената. Параметар µ је сразмеран броју 
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кластера у пропагационој околини [55]. к-µ расподела може се користити да опише 

анвелопу сигнала у каналима који могу формирати више кластера и где сваки кластер 

може имати доминантну компоненту. При томе, квадрат к-µ случајне променљиве може 

да се представи збиром 2µ квадрата Гаусових случајних променљивих, које су независне, 

где свака од њих може имати средњу вредност и чије су варијансе исте [58]. Крива 

кумулативне вероватноће се одређује као и у претходним случајевима. На апсциси су 

вредности к-µ случајног процеса, а на ординати је број узорака мањи од вредности на 

ординати нормализован са укупним бројем узорака. Ова крива је једнака вероватноћи 

отказа бежичног телекомуникационог система који ради у каналу са к-µ федингом. 

Такође, може да се одреди средња вредност, средња квадратна вредност и варијанса. 

Вероватноћа отказа се одређује помоћу кумулативне вероватноће.  

 Постоје разне диверзити технике које се користе да се смањи утицај брзог 

фединга, спорог фединга и међуканалне интерференције на вероватноћу отказа система, 

вероватноћу грешке система, капацитет канала и средње време трајања отказа система. 

Диверзити технике могу да буду просторне, фреквентне и временске. Најчешће се 

користе просторне диверзити технике [19]. Такође, постоји више техника комбиновања.  

Техника комбиновања која даје најбоље резултате је MRC комбиновање (Maximal 

Ratio Combining). Ова техника комбиновања даје најбоље резултате, али је веома 

сложена за практичну реализацију. Однос снаге сигнала и снаге шума на излазу MRC 

једнака је збиру односа снаге сигнала и снаге Гаусовог шума на његовим улазима. 

Комбинери могу да имају два, три или више улаза. Када је снага Гаусовог шума иста у 

свим гранама MRC пријемника, онда је квадрат сигнала на његовом излазу једнака збиру 

квадрата сигнала на његовим улазима. Због ове особине, када је на улазима у MRC 

присутан независан и идентичан Рејлијев фединг, Рајсов фединг, Накагами–m фединг 

или к-µ фединг, ови случајеви су веома погодни за математичке трансформације због 

тога што у овим случајевима анвелопа сигнала на излазу има 2 расподелу. MRC 

пријемник није погодан за практичну реализацију због тога што је потребно обезбедити 

да су сви сигнали на његовим улазима у фази и потребно је обезбедити поворке 

претходних импулса за сваку грану MRC комбинера. Поворке импулса треба обезбедити 

свакој грани због тога што треба проценити колики је однос снага сигнала у свакој грани 

да би се израчунали одговарајући тежински коефицијенти [23, 27].  

Пријемник са EGC (Equal Gain Combining) диверзити комбинером не даје тако 

добре перформансе као MRC техника комбиновања али је погоднији за практичну 

реализацију. Код ове технике комбиновања такође треба обезбедити да су сигнали на 

улазима у комбинер у фази, али не треба обезбедити поворке импулса за сваку грану 

комбинера. Број улаза може да буде два, три или више. Са повећањем броја грана EGC 

пријемника расте диверзити добитак. Сигнал на излазу из EGC пријемника једнак је 

збиру сигнала на његовим улазима. На основу ове особине могу једноставно да се одреде 

моменти сигнала на излазу из EGC комбинера [58, 80]. На овај начин могу да се 

израчунају средња вредност, средња квадратна вредност и варијанса сигнала на излазу у 

зависности од момената сигнала на улазима у EGC пријемник.  

Веома често се користи SC (Selection Combining) пријемник [12, 58, 78, 80]. SC 

пријемник одваја према кориснику ону грану пријемника на којој је однос снага сигнала 

и шума највећи. Када је снага шума иста у овим гранама, онда пријемник одваја ону грану 

са најјачим сигналом. У интерференцијом ограниченој околини снага интерференције је 

значајно већа од снаге шума тако да се утицај шума на перформансе система може 

занемарити. При томе, користе се три алгоритма рада селективног комбинера. Према 

првом алгоритму рада SC пријемник издваја грану са највећом снагом корисног сигнала. 

Према другом критеријуму SC пријемник одваја грану са највећом тоталном снагом. 

Према трећем критеријуму SC пријемник одваја грану са највећим односом снага сигнала 
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и међуканалне интерференције. Највећи диверзити добитак је када SC пријемник 

користи трећи алгоритам. Перформансе SC пријемника су лошије од перформанси MRC 

пријемника и EGC пријемника. SC пријемник има велику примену због тога што је 

једноставан за практичну реализацију [78, 82]. Густина вероватноће сигнала, 

кумулативна вероватноћа сигнала и средњи број осних пресека на излазу из SC 

пријемника може се једноставно израчунати.  

Често се користи SSC (Switch and Stay Combining) пријемник. Алгоритам рада 

овог пријемника је следећи. SSC пријемник издваја грану да обезбеди сервис према 

пријемнику све док је сигнал на тој грани већи од прага. Када сигнал падне испод прага, 

SSC пријемник бира другу грану да обезбеди сервис према пријемнику без обзира на 

ниво сигнала на овој грани. SSC пријемник има мањи диверзити добитак од SC 

пријемника али је једноставнији за практичну реализацију.  

Генералисан GSC пријемник (Generalized Selection Combining) се такође користи. 

Овај пријемник користи добре особине MRC пријемника и SC пријемника. 

Карактеристике овог GSC пријемника у погледу комплексности реализације и диверзити 

добитка су између MRC пријемника и SC пријемника. Алгоритам рада GSC пријемника 

је следећи. Укупан број грана се подели на N група. Свака од N група формира MRC 

пријемник. Сигнали са излаза N MRC пријемника формирају групу која формира SC 

пријемник. Сигнал са излаза SC пријемника се користи за даљи пренос или обраду [83]. 

За сваки пријемник значајно је одредити густину вероватноће сигнала (probability 

density function – PDF), кумулативну вероватноћу сигнала (cumulative density function – 

CDF), карактеристичну функцију сигнала (Mx(s)), моменте сигнала (mn) и централне 

моменте сигнала (Mn), на излазу, респективно. Средња вредност (m1), средња квадратна 

вредност (m2) и средња кубна вредност (m3) су најважнији моменти излазног сигнала. А 

од централних момената најважнија је варијанса сигнала (σx
2). Помоћу карактеристичне 

функције може се одредити густина вероватноће сигнала, које су, у ствари, Фуријеов 

трансформациони пар. При томе, често се користи особина карактеристичне функције да 

је збир њених независних случајних променљивих једнака производу њених сабирака. 

Такође и моменти могу да се одреде помоћу карактеристичне функције одговарајућим 

диференцирањем. Помоћу момената може да се израчуна износ фединга. Перформансе 

система могу да буду првог реда и другог реда. Перформансе првог реда су вероватноћа 

отказа (pout), вероватноћа грешке и капацитет канала (C). Вероватноћа отказа (outage 

probability) се рачуна помоћу кумулативне вероватноће. Вероватноћа грешке се рачуна 

усредњавањем условне вероватноће грешке. Вероватноћа грешке се рачуна за 

кохерентне системе и за некохерентне системе. Перформансе система друге врсте су 

здружена густина вероватноће сигнала (  1111
yyp xx
 ) и првог извода сигнала (ẋ), средњи 

број осних пресека случајног процеса сигнала (Nx) и средњe време трајања отказа система 

(Average Fade Duration  AFD). При томе, Nx може да се израчуна као средња вредност 

од првог извода случајног процеса, а AFD као количник вероватноће отказа и средњег 

броја осних пресека. Такође, може се разматрати густина вероватноће дужине осних 

пресека. Ова густина вероватноће је сразмерна здруженој густини вероватноће два 

узорка случајног процеса и њихових првих извода [26, 80]. Такође је значајно израчунати 

здружену густину вероватноће два узорка случајног процеса сигнала на излазу из 

пријемника. Вероватноћа отказа је дефинисана као вероватноћа да је вредност сигнала 

мања од унапред одређеног прага пријема.  

Макродиверзити системи се користе да истовремено смање утицај спорог 

фединга, брзог фединга и међуканалне интерференције на перформансе система. Тако, 

на пример, макродиверзити систем који се састоји од макродиверзити SC пријемника и 

два микродиверзити SC комбинера се користи да истовремено смањи утицај спорог 

фединга и брзог фединга на перформансе система, при чему макродиверзити SC 



 

5 

 

пријемник смањује утицај спорог фединга, а микродиверзити пријемници смањују 

утицај брзог фединга на перформансе система. Макродиверзити SC пријемник издваја 

микродиверзити пријемник са највећом снагом анвелопе да би обезбедио сервис према 

кориснику, док микродиверзити пријемник издваја грану са највећим односом снаге 

анвелопе корисног сигнала и снаге анвелопе интерференције да би обезбедио сервис 

према кориснику. Макродиверзити SC пријемник комбинује сигнал са антена на две или 

више базних станица, а микродиверзити пријемници комбинују сигнал са више антена 

на базној станици. Спори фединг је корелисан и због тога је спори фединг на улазима у 

микродиверзити пријемник описан корелисаним Гама федингом. Међуканална 

интерференцијa се може представити као синусни талас са константном или 

променљивом амплитудом и униформно расподељеном фазом [29, 38, 80]. 

 Међуканална интерференцијa изазива повећање вероватноће отказа и 

вероватноће грешке, а смањује капацитет канала. Интерференцијa може да се представи 

са једним синусним таласом, са два синусна таласа или са више синусних таласа. Када је 

број синусних таласа већи онда се интерференцијa може апроксимирати са Гаусовим 

случајним процесом према централној граничној теореми. Спектар интерференције је 

одређен аутокорелационом функцијом. 

У интерференцијом ограниченим каналима значајна сметња је међуканална 

интерференцијa и у овим системима је однос анвелопе корисног сигнала и 

интерференције важна перформанса система. Анвелопа међуканалне интерференције 

може бити описана разним расподелама. За смањење утицаја к-µ фединга на вероватноћу 

грешке система користе се MRC пријемници, EGC пријемници и SC пријемници. Вектор 

сигнала на излазу из MRC пријемника се добија квадрирањем и сабирањем вектора на 

улазима, а затим кореновањем добијеног збира. Сигнал на излазу из SC пријемника 

једнак је максимуму вектора на његовим улазима. MRC диверзити пријемник има 

најбоље перформансе, а SC диверзити пријемник даје највеће вредности вероватноће 

отказа, тј. има лошије перформансе [10]. Међутим, SC пријемник је једноставнији за 

реализацију од MRC и EGC пријемника. 

У овој докторској дисертацији су разматране перформансе система за случај када 

је скетеринг поље хомогено, односно када постоји већи број компоненти на улазима у 

пријемник, тако да важи централна гранична теорема према којој збир независних и 

случајних синусних таласа има Гаусову расподелу. Претпостављено је да се у каналу 

могу формирати једна или више доминантних компонената, што представља оптичку 

видљивост између предајника и пријемника. При томе, доминантне компоненте могу да 

буду константне, а могу да буду и променљиве. Такође, претпостављено је се да се 

користи ћелијска конфигурација да би се повећао капацитет канала. У овом случају 

доминантна сметња је међуканална интерференција која има велики утицај на 

перформансе ситема, а утицај Гаусовог шума на вероватноћу отказа система може се 

занемарити. У истраживањима су примењене аналитичке методе, методе математичког 

и нумеричког моделовања, као и симулације. 

У другој глави дисертације разматрана је Рајсова расподела [5, 81, 105] као 

специјални случај к-μ расподеле. Прво су разматране статистичке карактеристике 

максимума две Рајсове случајне променљиве. При томе, изведен је израз затвореног 

облика за густину вероватноће и кумулативну вероватноћу максимума две независне 

Рајсове случајне променљиве. Такође, одређене су и густина вероватноће и кумулативна 

вероватноћа максимума три Рајсове случајне променљиве. 

У трећој глави разматран је к-μ случајни процес који има једну или више 

доминантних компонената. Поред тога, разматран је начин симулације оваквих 

случајних променљивих, који ће даље бити употребљен за компаративну анализу 

аналитичких резултата, као и за добијање нумеричких резултата са симулационим 
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резултатима. Затим је разматран количник и производ две к-μ случајне променљиве, за 

које су одређене густине вероватноће и кумулативне вероватноће. Добијени резултати 

су потврђени путем симулације, чиме ће бити постављена основа за даљу анализу 

коришћењем предложених аналитичких метода. Иначе, за графички приказ резултата је 

коришћен програм Wolfram Mathematica 12.2. 

У четвртој глави је разматран статистички канал у коме истовремено постоје 

спори Гама фединг и брзи к-μ фединг [2, 3, 4, 85]. У овом случају, квадрат еквивалентног 

сигнала је једнак производу две случајне променљиве, од којих једна има Гама 

расподелу, а друга има к-μ расподелу. Ови резултати се могу применити код бежичних 

система код којих је присутан спори Гама фединг, као и тамо где су истовремено 

присутни брзи к-μ фединг и међуканална интерференција која је под утицајем истог. При 

томе, одређене су и статистичке карактеристике математичког модела 

телекомуникационог канала који се може представити као однос поменутих случајних 

променљивих. Ови резултати представљаће аналитичку основу за даље разматрање 

карактеристика телекомуникационих система.  

 У петој глави је разматран макродиверзити систем који се користи да се 

истовремено смањи утицај спорог Гама фединга и брзог к-μ фединга на перформансе 

система. Прво је формиран предлог изгледа пријемног система на бази диверзита са 

селекционим комбиновањем, чија је улога смањење утицаја брзог фединга. Након тога, 

формиран је модел пријемника који укључује и комбиновање на макро нивоу, чији је 

циљ истовремено отклањање ефеката сенке, односно спорог фединга. При томе, 

нумерички резултати су развијени до одређивања перформанси пријема оваквог система 

на нивоу вероватноће отказа. 

У шестој глави је, такође, разматран макродиверзити систем у присуству спорог 

Гама фединга, к-μ корисног сигнала и к-μ међуканалне интерференције. Наиме, 

разматрани макродиверзити систем састоји се од селекционог макродиверзити 

пријемника и од два селекциона микродиверзити комбинера. При томе, макродиверзити 

пријемник смањује утицај спорог Гама фединга , а микродиверзити комбинери смањују 

утицај брзог к-μ фединга. У овом делу дисертације разматран је случај када је снага 

интерференције доминантна сметња у поређењу са ефектима шума, што је очекивани 

случај у урбаним срединама. Значајни резултати се односе на вероватноћу отказа у 

функцији параметара система и пропагационог окружења, као и на добитак 

комбиновања, што ће експлицитно показати побољшање перформанси услед примене 

операције комбиновања на макро нивоу.  

У седмој глави је приказано експериментално мерење односа 

сигнал/интерференција (SIR) и статистичка анализа пријема у макродиверзити систему. 

Наиме, у овој глави је представљен модел физичког система коришћењем јефтиних 

примопредајника помоћу којих су прикупљени експериментални подаци да би се 

истражио вишеструки фединг и утицај међуканалне интерференције. Систем који је 

испитиван, био је систем диверзитија који се састоји од две базне станице (BS), од којих 

свака има два SC пријемника и додатни SC пријемник на другом нивоу комбиновања. 

Свака BS је опремљена са две неусмерене антене. Претпостављено је присуство другог 

уређаја, који је тумачен као ометач. У лабораторијски контролисаним условима уређаји 

су позиционирани у малом простору и растојање између њих је очекивано мало. Зато је 

очекивано да пријемни сигнал буде релативно висок у поређењу са нивоом шума. У 

таквим условима, главни детерминишући фактор комуникације је интерференција за 

уређаје у близини. Покрети мобилног примопредајника вршени су у малим корацима, 

што је резултирало континуираним нивоима сигнала, погодним за статистичку анализу. 

Мерења реалног сценарија канала су премостила јаз између аналитичких и практичних 

резултата, јер је већина претходно објављених радова на ову тему засновано на 
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теоријској анализи κ-μ фединг расподеле. Такође, приказани модел система није раније 

експериментално описан.Утврђено је да су експериментални резултати у сагласности са 

аналитички развијеним изразима за SIR и метрику перформанси отказа и оправдали су 

употребу κ-μ модела као погодног за такве мреже и окружења ограничена 

интерференцијом.  

На основу добијених резултата за вероватноћу отказа, као једне од перформанси 

телекомуникационих система, показана је оправданост примене диверзити технике, која 

може бити корисна у пројектовању бежичних система. При томе, изведени аналитички 

изрази у овој дисертацији могу се применити и на остале карактеристике система.  
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2. СТАТИСТИЧКЕ КАРАКТЕРИСТИКЕ РАЈСОВОГ ФЕДИНГА 

 Рајсова расподела је специјалан случај генерализоване к-μ расподеле. За μ=1, к-μ 

расподела се своди на Рајсову расподелу [45, 81]. Рајсова расподела се може употребити 

да опише брзи фединг који настаје због простирања сигнала по више путева у каналима 

где се може простирати доминантна компонента у оквиру једног кластера. Рајсову 

расподелу има еквивалентна анвелопа збира ускопојасног Гаусовог шума и синусног 

таласа са униформном случајном фазом. Ускопојасни Гаусов шум има две међусобно 

независне компоненте које имају Гаусову густину вероватноће, средњу вредност нула, 

исте варијансе. На основу ове дефиниције може да се изведе израз за густину 

вероватноће (PDF) Рајсове случајне променљивеа Тако добијени PDF може даље да се 

користи за одређивање кумулативне вероватноће (CDF), карактеристичне функције и 

момената Рајсове случајне променљиве. Поред тога, могу да се одреде и средња 

вредност, средња квадратна вредност и варијанса Рајсове случајне променљиве. Такође, 

могу да се одреде капацитет канала, вероватноћа отказа, износ фединга, вероватноћа 

грешке телекомуникационог бежичног система који ради у каналу са Рајсовим федингом 

[88]. Први извод од Рајсове случајне променљиве има Гаусову густину вероватноће, која 

има средњу вредност нула и варијансу која је сразмерна са квадратом максималне 

Доплерове фреквенције и средње снаге Рајсовог сигнала, а обрнуто је сразмерна са 

Рајсовим фактором [35, 58]. Рајсов фактор је дефинисан као количник снаге доминантне 

компоненте и снаге скeтеринг компонената. Рајсова случајна променљива и њен први 

извод су међусобно независни. Зато је њихова здружена PDF једнака производу PDF 

Рајсове случајне променљиве и њеног првог извода. Тако добијена здружена PDF може 

да се користи за одређивање средњег броја осних пресека Рајсовог случајног процеса. 

При томе, средњи број осних пресека може да се одреди као средња вредност од првог 

извода Рајсовог случајног процеса. Средњи број осних пресека се користи за одређивање 

средњег времена трајања отказа бежичног комуникационог система који ради у каналу 

са Рајсовим федингом [80, 91]. Средње време трајања отказа представља количник 

вероватноће отказа и средњег броја осних пресека [88].  

 

2.1 Максимум од две Рајсове случајне променљиве 

  Две Рајсове случајне променљиве 1x  и 2x , следе расподеле (PDF) [58, 65, 67]:  
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где је )(0 I  модификована Беселова функција. 

Рајсов фединг канал је описан помоћу два параметра: к и Ω , где је к однос између 

снаге директне компоненте и снаге осталих скетеринг компонената, а Ω  је укупна снага.  

Рајсов фактор к расте када расте снага доминантне компоненте или опада снага 

скетеринг компонената. 

Кумулативна вероватноћа (CDF) од 1x  је [1, 30, 45, 46, 88]: 
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Кумулативна вероватноћа од 2x  је [1, 30, 45, 46, 88]: 
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Где је  xn,  непотпуна Гама функција [1, 30]: 
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Применом ове формуле добија се: 
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Нека је случајна променљива 1y  једнака: 
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Густина вероватноће од 1y  је једнака [10, 37, 58, 80, 88]: 
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Кумулативна вероватноћа од 1y  је једнака [10]: 
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Момент n -тог реда од максимума две Рајсове случајне променљиве је [34, 36, 88]: 
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Средња вредност од 1y  је [88] : 
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             (2.18)

 Средња квадратна вредност од 1y  (n = 2) је [88]: 
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              (2.20) 

Варијанса од 1y  је: 
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Централни момент n -тог реда од 1y  је [44]: 
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Здружена густина вероватноће од 1y  и 1y  је [10, 45, 88]: 
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Први извод Рајсове случајне променљиве има Гаусову густину вероватноће. 

Рајсова случајна променљива и њен први извод су међусобно независни. Зато је њихова 

здружена PDF једнака производу PDF Рајсове случајне променљиве и Гаусовe PDF 

њеног првог извода [10, 45, 88]: 
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Здружене густине вероватноће од  11, xx   и  22, xx   су [10, 45, 88]: 
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Заменом се добија: 
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Средњи број осних пресека од 1y  је [9, 10, 36, 45, 46, 80, 88]: 
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2.2 Максимум од три Рајсове случајне променљиве 

Максимум од три Рајсове случајне променљиве је: 

 3212 ,,max xxxy                                          (2.29) 

Густине вероватноће (PDF) случајних променљивих су: 
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Рајсов фединг канал је описан помоћу два параметра: к и Ω , где је к однос између 

снаге директне компоненте и снаге осталих скетеринг компонената, а Ω  је укупна снага.  

Рајсов фактор к расте када расте снага доминантне компоненте или опада снага 

скетеринг компонената. 

Кумулативне вероватноће (CDF) случајних променљивих су [1, 6, 45, 46, 88]:      
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Густина вероватноће од 2y  је [10, 37, 58, 80, 88]: 
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yFyFypyFyFypyFyFypyp xxxxxxxxxy                        (2.36) 

Густина вероватноће максимума од три случајне променљиве садржи три члана. 

Сваки члан има три чиниоца. Први чинилац је густина вероватноће прве случајне 

променљиве. Друга два чиниоца су кумулативне вероватноће друге две случајне 

променљиве. 
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Кумулативна вероватноћа сигнала y2 једнака је производу појединих 
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Здружена густина вероватноће од 2y  и 2y  је [10, 45, 88]: 
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Средњи број осних пресека од 2y  је [9, 10, 36, 41, 45, 46, 80, 88]: 
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Mомент n -тог реда од максимума три Рајсове случајне променљиве је [36, 88]:  
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Применом формуле [30]: 
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Mомент n -тог реда од максимума три Рајсове случајне променљиве је:  
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Када се у израз (2.69) замени n = 1, добија се средња вредност од 2y : 
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Када се у израз (2.68) замени n = 2, добија се средња квадратна вредност од 2y : 
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         (2.69) 

 

 Како је к-μ расподела предмет разматрања ове докторске дисертације, било је 

неопходно у овој глави размотрити Рајсову расподелу као њен специјалан случај. При 

томе, одређена је PDF од максимума две Рајсове променљиве  211 ,max xxy  , CDF од 1y

, момент n-тог реда од 1y , а на основу њега средња вредност и средња квадратна вредност 

од 1y , варијанса од 1y , централни момент n-тог реда од 1y . Поред тога, одређена је и 

здружена густина вероватноће од 1y  и 1y , помоћу које је одређен средњи број осних 

пресека од 1y . За максимум од три Рајсове случајне променљиве ( ),,max( 3212 xxxy  ) 

одређене су PDF од 2y , CDF од 2y , здружена густина вероватноће од 2y  и 2y , средњи 

број осних пресека од 2y , момент n-тог реда од 2y , средња вредност од 2y , средња 

квадратна вредност од 2y , варијанса од 2y , централни момент n-тог реда од 2y . Све 

једначине су изведене у затвореном облику и представљају значајан допринос ове 

докторске дисертације. 

Ови резултати могу да се употребе за анализу перформанси бежичног мобилног 

телекомуникационог система, који ради у фединг каналу у коме су присутни брзи Рајсов 

фединг и спори Гама фединг настао због ефекта сенке која захвата доминантну 

компоненту. 
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3. СТАТИСТИЧКЕ КАРАКТЕРИСТИКЕ к-μ СЛУЧАЈНОГ ПРОЦЕСА 

 к-μ расподела се може користити за описивање брзог фединга који је настао 

простирањем сигнала по више путева. При томе, постоје две или више доминантних 

компонената које се простиру каналом са више кластера. Два параметра карактеришу ову 

расподелу: параметар к који се назива Рајсов фактор и параметар μ. Наиме, Рајсов фактор 

је представљен количником снаге доминантних компонената и снаге скетеринг 

компонената. Тако, са порастом снаге доминантних компонената, Рајсов фактор ће расти 

а дубина фединга ће опадати. Супротно томе, са порастом снаге скетеринг компонената, 

Рајсов фактор ће опадати а дубина фединга ће расти. Треба још истаћи да је параметар μ 

у релацији са бројем кластера у пропагационом окружењу [85].  

к-μ расподела је општа расподела. У зависности од вредности параметара к и μ од 

ње се могу добити Рејлијева, Рајсова или Накагами–m расподела, респективно. к-μ 

расподела је у ствари 2 расподела. На основу ове расподеле може се добити PDF к-μ 

случајне променљиве. Тако добијена PDF се користи за израчунавање CDF, 

карактеристичнe функцијe и моменaтa к-μ случајне променљиве. Поред тога, статистика 

момената је коришћена за одређивање средње вредности, средње квадратне вредности и 

варијансе к-μ случајне променљиве.  

Овако добијене статистичке карактеристике к-μ случајне променљиве могу се 

користити за одређивање вероватноће отказа, вероватноће грешке и капацитета канала 

бежичних дигиталних комуникационих система који раде у к-μ каналу. к-μ случајна 

променљива и њен први извод су међусобно независне. При томе, први извод од к-μ 

случајне променљиве има Гаусову густину вероватноће, чија је средња вредност нула а 

варијанса сразмерна максималној Доплеровој фреквенцији [9, 100]. Тада је здружена 

PDF к-μ случајне променљиве и њеног првог извода једнака производу PDF к-μ случајне 

променљиве и Гаусове PDF од првог извода к-μ случајне променљиве. Тако добијена 

здружена PDF може да се користи за одређивање средњег броја осних пресека и средње 

вредности од првог извода к-μ случајног процеса. Средњи број осних пресека може да се 

користи за одређивање средњег времена трајања отказа бежичног телекомуникационог 

система. При томе, средње време трајања отказа представља количник вероватноће 

отказа и средњег броја осних пресека. С друге стране, вероватноћа отказа представља 

вероватноћу да је ниво сигнала испод одређеног прага. Здружена PDF случајног процеса 

може да се одреди у две тачке у простору. Тако добијена здружена PDF може да се 

користи за одређивање PDF дужине осних пресека [58]. CDF дужине осних пресека је 

једна од важних мера перформанси бежичних комуникационих система. Здружена PDF 

за две корелисане к-μ случајне променљиве је, такође, одређена. При томе, здружена PDF 

може да се користи за одређивање перформанси селективног комбинера са два улаза. 

Треба нагласити да корелисани к-μ фединг који је присутан на улазу смањује диверзити 

добитак. Зато је важно да се у таквом сценарију канала одреди вероватноћа отказа [58, 

80]. За симулацију к-μ случајног процеса je коришћен програм Wolfram Mathematica 12.2.  

 

3.1 Густина вероватноће к-μ случајног процеса 

к-μ случајна променљива има густину вероватноће [9, 41, 65]:  
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На основу једначине (3.1) израчуната је CDF к-μ случајне променљиве у 

отвореном облику: 
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                       (3.2) 

Овај интеграл се решава помоћу формуле [30]: 
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Заменом се добија: 
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Применом интеграла (3.3) израчуната је CDF к-μ случајне променљиве у 

затвореном облику: 
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Карактеристична функција од x је једнака [36]: 
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Момент n-тог реда је: 
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где је:
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Овај интеграл се решава помоћу формуле [30]: 
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где је: 
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Заменом се добија: 
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Тако да је: 
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Средња вредност је: 
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Средња квадратна вредност је: 
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Варијанса од x је једнака [50]:  
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(3.14)

 

За овако добијени к-μ вектор може да се одреди хистограм, кумулативна 

вероватноћа, моменти и средњи број осних пресека. Овако добијени резултати могу да 

се користе за одређивање вероватноће отказа и средњег времена трајања отказа 

бежичних телекомуникационих система код којих је присутан к-μ брзи фединг [72]. 

Здружена густина вероватноће случајне променљиве x и њеног првог извода x  је: 

     xpxpxxp xxxx
                    (3.15) 

Први извод од x има Гаусову густину вероватноће: 
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Квадрат од x је једнак: 
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где су ix , 21i  независне Гаусове случајне променљиве са средњим вредностима 

нула и са истим варијансама. Први извод од x је једнак: 

  222211 .....
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x                   (3.18) 

Случајна променљива x  има условну Гаусову густину вероватноће [9, 99, 107]. 

Средња вредност од x  има средњу вредност: 
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Како је:  
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Варијанса од x  је: 
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где је:  
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После замене се добија: 
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Израз за здружену густину вероватноће од к-μ случајне променљиве и њеног 

првог извода је [50]: 
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Средњи број осних пресека од к-μ случајне променљиве је [9, 29, 35]: 
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Слика 3.1. PDF к-μ случајне променљиве, на основу једначине (3.1), за број кластера 

2 , Рајсов фактор к=5 и различите вредности средњих снага Ω =0.5, 1, 2, 3 (плава, 

наранџаста, зелена, црвена крива, респективно). 

 

µ=2 

k=5 

Ω=0.

5 

Ω=1 
 

Ω=2 
 

µ=2 

к=5 

 Ω=0.5 

 

Ω=1 

Ω=2 

Ω=3 



 

32 

 

На слици 3.1. дат је графички приказ добијених нумеричких резултата за PDF к-μ 

случајне променљиве, на основу једначине (3.1), у зависности од анвелопе сигнала, за 

број кластера 2 , Рајсов фактор к = 5 и различите вредности средњих снага Ω =0.5, 1, 

2, 3 (плава, наранџаста, зелена, црвена крива, респективно). 

Једначина за CDF к-μ случајне променљиве израчуната је у затвореном облику и 

дата у једначини (3.5). На основу ове једначине је извршено цртање графика у програму 

Wolfram Mathematica 12.2 на основу задатих параметара (број кластера 2 , Рајсов 

фактор к = 5 и различите вредности средње снага Ω = 0.5, 1, 2, 3), што је дато на слици 

3.2. 

 

  
Слика 3.2. CDF к-μ случајне променљиве, на основу једначине (3.5), за број кластера 

2 , Рајсов фактор к=5 и различите вредности средњих снага Ω = 0.5, 1, 2, 3 (плава, 

наранџаста, зелена, црвена крива, респективно). 

 

На слици 3.3. дат је графички приказ густине вероватноће (PDF) за к-μ случајну 

променљиву, за број кластера 2 , Рајсов фактор к = 5, средњу снагу 3Ω  и број 

семплова 100000, добијен симулацијом (хистограм) и нумерички (испрекидана линија), 

респективно. Са дате слике се може видети добро поклапање добијених резултата. При 

томе, треба навести да је хистограм добијен Смирновом методом. Наиме, инверзно 

трансформационо одмеравање (познато као инверзни интеграл вероватноће 

трансформације, инверзни метод трансформације, Смирнов трансформација или златно 

правило) је основна метода за генерисање псеудо случајних бројева, односно за 

генерисање узорака бројева као случајних за које је дата CDF функција. Инверзно 

трансформационо одмеравање користи униформне узорке бројева између 0 и 1, 

интерпретирано као вероватноћа, и онда враћа највећи број Х из домена расподеле P(X) 

као што је .)( uxXP   На пример, нека је P(x) стандардна нормална расподела са 

средњом вредношћу 0 и стандардном девијацијом 1. Табела показује узорке узете из 

униформне расподеле и њихово прeзентовање стандардне нормалне расподеле. 

 

µ=2 

к=5 
 

Ω=0.5 

5 
 

Ω=1 

 

Ω=2 

 

Ω=3 
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Слика 3.3. Графички приказ густине вероватноће (PDF) за к-μ случајну променљиву, за 

број кластера 2 , Рајсов фактор к =5, средњу снагу 3Ω  и број семплова 100000, 

добијен симулацијом (хистограм) и нумерички (испрекидана линија), респективно.  

 

 Трансформација из униформног узорка у линеарни: 

    u  )(1 uF 
 

    .5   0 

    .975  1.95996 

    .995   2.5758 

    .999999  4.75342 

     21 -52  8.12589 

 

 Случајно се бира размера области испод криве, па се враћа број у домен као што 

је тачно размера ове области и, при томе, појављује се лево од тог броја. Интуитивно, 

најређе се бира удаљени број и на репу зато што постоји веома мала област која би 

захтевала бирење броја веома близу нуле или јединице. Рачунски, ова метода укључује 

рачунање квантилне функције расподеле (која је инверзна функција функције CDF), 

другим речима врши се рачунање CDF расподеле (што мапира број у домен вероватноће 

између 0 и 1), а онда треба инвертовати ту функцију. Ово је извор термина „инверзно“ 

или „инверзије“ у већини имена за овај метод. Може се приметити да за дискретну 

расподелу, израчунавање CDF није превише тешко, јер се једноставно врши додавање 

појединачне вероватноће за различите тачке расподеле.  

 За континуалну расподелу, међутим, треба да се интеграле PDF расподеле, што је 

немогуће урадити аналитички за већину расподела (укључујући и нормалну расподелу). 

Као резултат, ова метода може бити рачунски неефикасна за многе расподеле, па су друге 

методе приоритетне. Међутим, ова метода је корисна за стварање уопштене слике. 

Проблем који метода инверзног трансформационог семпловања решава је као што 

следи. 

Нека је Х случајна променљива чија расподела може бити описана са CDF XF . 

Циљ је генерисање вредности од Х које су дистрибуиране према овој расподели. 

µ=2, 

к=5, Ω=3 

 

Нумерички 

N=100000 

(хистограм) 
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Ова метода функционише на следећи начин: 

1. Генерише случајни број из стандардне униформне расподеле у 

интервалу  1,0 , за U   1,0nifU , 

2. Налази инверзну функцију од жељене CDF ))(( 1 xFX


. 

3. Израчунава )(1 uFX X

 . Израчуната случајна променљива Х има 

расподелу  xFX
.  

Изражено на други начин, дата континуална униформна променљива U у  1,0  и 

инверзна CDF XF , случајна променљива )(1 UFX X

  има расподелу XF . 

 У намери да се добије велики број узорака, потребно је извршити исти број 

инверзија расподеле. Једини могући начин за смањење броја инверзија је да се врши 

прибављање великог број семплова (одмерака) у апликацији названој Stochastic 

Collocation Monte Carlo семплер (SCMC семплер), у склопу PC (Polynomial chaos) у 

ширем смислу. Ово омогућава да се генерише било који број из Monte Carlo семплова са 

само неколико инверзија оригиналне расподеле, са независним семпловима променљиве 

за коју су инверзије аналитички доступне, нпр. стандардна нормална променљива. 

 

3.2 Количник две к-μ случајне променљиве 

 Количник две к-μ случајне променљиве може се применити у анализи рада к-μ 

фединг канала [17, 41]. При томе, добијен је израз у затвореном облику за густину 

вероватноће.  

Разматране су две к-μ случајне променљиве x и y и њихове густине вероватноће 

[45, 41]: 
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Случајна променљива z је количник од x и y [50]:  

y

x
z                      (3.28) 

Тада је њена густина вероватноће [34]: 

     



0

ypyzpydyzp yxz                  (3.29) 

pz(z)= 
 2211

2
 кк

e

  1

2

1

111










 

Ω

к  








 


2

2

2

221




Ω

к
 
   










 







21

1

2

2

1

11

2

2

22

12

11





z

Ω

к

Ω

к

z
 



 

35 

 

   









 














0 0
2

2

1

11

2

2

22

2

1 2

21

1

11i i
ii

i

z
Ω

к

Ω

к

z


  2121 iiΓ

 

 




























111

2

1

1
11

!

1

1





iΓi

Ω
кк

i

 

 222

2

2

2
22

!

1

2
































iΓi

Ω
кк

i

                  (3.30) 

Први извод од z је [1]: 

2y

yx

y

x
z


                     (3.31) 

Варијанса од z је [58]: 
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где је:  
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После замене се добија [34]: 
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Здружена густина вероватноће од z, z  и y је [60]: 

    zypzyzpyzzp zyzyzz )/(        yzpypzyzp zyz //               (3.36) 

где је: 
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     zypyyp xy                            (3.39) 

Густина вероватноће од z и z  је: 
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Кумулативна вероватноћа количника две к-μ случајне променљиве је израчуната 

на основу једначине (3.29) и следеће дефиниционе формуле: 
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Решење овог интеграла је : 
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где је ,2 xt   xt  , dxdtt 2 , 
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Кумулативна вероватноћа је затим: 
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тј. у сређенијем облику CDF има следећу форму: 
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Средњи број осних пресека од z је: 
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Интеграл у претходном изразу је: 
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Описани (к-μ)/(к-μ) фединг канал има следеће параметре: 1к , 2к , 1  и 2 . У 

Табели 3.1 су дате различите комбинације фединг канала за различите комбинације и 

вредности наведених параметара.  

 

Табела 3.1. Различите комбинације фединг канала за различите комбинације и вредности 

параметара.  

 

Фединг канал 
Параметри  

1к  2к  1  2  

Накагами-m/Накагами-m  0 0 - - 

Рајсов/Рајсов  - - 1 1 

Рејлијев/Рејлијев  0 0 1 1 

Накагами-m/(к-μ)  0 - - - 

Рајсов/(к-μ)  - - 1 - 

Рејлијев/(к-μ)  0 - 1 - 

 

Добијени резултати могу се користити у анализи перформанси бежичног 

мобилног телекомуникационог радио система. На пример, у каналу са к-μ федингом, или 

к-μ брзим федингом, и где је истовремено присутна међуканална интерференција под 

утицајем истог, респективно. За графички приказ нумеричких и симулационих резултата 

PDF-a је коришћен програм Wolfram Mathematica 12.2. При томе, нумерички резултати 

су приказани испрекиданом линијом, а симулациони резултати хистограмом (стубичасти 

граф). Хистограм је добијен Монте-Карло симулацијом. Поређење нумеричких и 

симулационих резултата извршено је за N = 1000, 10000 и 100000 семплова (одмерака), 

респективно. При томе, најбоље поклапање је добијено за N = 100000. 

 

 

Слика 3.4. PDF количника две к-μ случајне променљиве, за вредности параметара 

11 Ω  , 21 к , 11  , 12 Ω , 32 к , 22  , N = 1000. 

 

    

N=1000 

Хистограм 

Нумерички 

резултат 

 

N=1000 
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Слика 3.5. PDF количника две к-μ случајне променљиве, за вредности параметара 

11 Ω , 21 к , 11  , 12 Ω , 32 к , 22  , N = 10000. 

 

 

 

Слика 3.6. PDF количника две к-μ случајне променљиве, за вредности параметара 

11 Ω  , 21 к , 11  , 12 Ω , 32 к , 22  , N=100000. 

 

Слика 3.4. приказује PDF количника две случајне променљиве, за вредности 

параметара 11 Ω , 21 к , 11  , 12 Ω , 32 к , 22  . Број одмерака у интервалу 

N=10000 
 

Хистограм 

 

Нумерички 

резултат 

 

N=10000 

N=100000 

Хистограм 

 

Нумерички 

резултат 
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апсцисе је N = 1000. При томе, x–оса (апсциса) представља вредност амплитуде к-μ 

случајног процеса, 

Слика 3.5. приказује PDF количника две случајне променљиве, за вредности 

параметара 11 Ω , 21 к , 11  , 12 Ω , 32 к , 22  . Број одмерака у интервалу 

апсцисе је N = 10000.  

Слика 3.6. приказује PDF количника две случајне променљиве, за вредности 

параметара 11 Ω , 21 к , 11  , 12 Ω , 32 к , 22  . Број одмерака у интервалу 

апсцисе је N = 100000. 

 

 

 
Слика 3.7. CDF количника две к-μ случајне променљиве, које су добијене на основу 

једначине (3.44). Параметри су 11 Ω , 1к 1, 11  , 12 Ω , 12 к , 12   (зелена крива), 

11 Ω , 1к 1, 21  , 12 Ω , 22 к , 12   (наранџаста крива), 11 Ω , 1к 3, 21  , 

12 Ω , 22 к , 32   (плава крива), респективно. 

 

Слика 3.7. приказује CDF количника две к-μ случајне променљиве, које су 

добијене на основу једначине (3.44). Параметри су 11 Ω , 1к 1, 11  , 12 Ω , 12 к , 

12   (зелена крива), 11 Ω , 1к 1, 21  , 12 Ω , 22 к , 12   (наранџаста крива), 

11 Ω , 1к 3, 21  , 12 Ω , 22 к , 32   (плава крива), респективно. 

Здружена густина вероватноће од z,  и y је: 

             (3.49) 

где је: 

,                 (3.50) 

 

Здружена густина вероватноће од z,  и y је: 

               (3.51) 

z

 )()/()( zypzyzpyzzp zyzyzz
  )()/( ypzyzp yz  )/( yzpz

)()/( zyp
dz

dx
yzp xz  y

dz

dx


z

)()()/()( ypzypyzyzpyzzp yxzyzz   

Ω1=1, к1=1, µ1=1 , 

Ω2=1, к2=1, µ2=1 

Ω1=1, к1=1, µ1=2 , 

Ω2=1, к2=2, µ2=1, 

Ω1=1, к1=3, µ1=2 , 

Ω2=1, к2=2, µ2=3 
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Здружена густина вероватноће од односа две к-μ случајне променљиве и његовог 

првог извода је [34, 80]: 

               (3.52) 

Средњи број осних пресека од z је: 

                (3.53) 

Први извод од z је:  

                            (3.54) 

Први извод од к-μ расподеле има Гаусову густину вероватноће. На основу овога 

 и  су Гаусове случајне променљиве. Линеарна трансформација Гаусових случајних 

променљивих је Гаусова случајна променљива. На основу овога  има Гаусову густину 

вероватноће.  

Средња вредност од  је: 

                   (3.55) 

Како је: 

,                   (3.56) 
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Стандардна девијација је једнака: 
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Средњи број осних пресека две к-μ случајне променљиве је: 
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3.3 Производ две к-μ случајне променљиве 

Производ од две к-μ случајне променљиве је: 

yxz                     (3.63) 

Тада је њена густина [41, 50, 88]:  
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Заменом статистике случајних променљивих у претходном изразу, добија се: 
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Статистичке карактеристике производа две к-μ случајне променљиве могу се 

користити у анализи перформанси бежичних телекомуникационих система. 
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Трансформационом методом може се одредити густина вероватноће производа две к-μ 

случајно променљиве [16, 31]. При томе, добијени израз за густину вероватноће је у 

затвореном облику и садржи модификовану Беселову функцију друге врсте. Ови 

резултати могу да се примене код анализе перформанси бежичног релејног система са 

две деонице на којима је присутан к-μ фединг. Анвелопа сигнала на излазу из релејног 

система може да се представи као производ две к-μ случајно променљиве [89]. Овако 

добијена случајна променљива може се написати у облику (к-μ)×(к-μ) случајна 

променљива. Ова случајна променљива има четири параметра. Од (к-μ)×(к-μ) случајне 

променљиве могу се добити друге случајне променљиве за различите комбинације и 

вредности наведених параметара. Тако, за 01 к  и 02 к , од (к-μ)×(к-μ) случајне 

променљиве је добијена Накагами-m×Накагами-m случајна променљива. За 11   и 

12  , (к-μ)×(к-μ) случајна променљива је постала Рајсова×Рајсова случајна 

променљива, а за 01 к , 02 к , 11   и 12  , од (к-μ)×(к-μ) случајне променљиве је 

добијена Рејлијева×Рејлијева случајна променљива. Такође, за 01 к  и 11  , Рејлијева 

к-μ случајна променљива је изведена из (к-μ)×(к-μ) случајне променљиве. За 01 к , 

Накагами-m×(к-μ) случајна променљива је изведена из (к-μ)×(к-μ) случајне променљиве, 

а за 11   Рајсова×(к-μ) расподела.  

 

 

 
Слика 3.8. PDF производа две к-μ случајне променљиве, на основу једначине (3.65). 

Вредности параметара су: 11 Ω , 11 к , 11  , 12 Ω , 12 к , 12   (плава крива); 

11 Ω  , 11 к , 21  , 12 Ω , 22 к , 12   (наранџаста крива); 12  ; 11 Ω , 1к 3, 

21  , 12 Ω , 22 к , 32   (зелена крива), респективно. 

 

Резултати за густину вероватноће, добијени у овој дисертацији, могу да се 

примене за одређивање густине вероватноће случајних променљивих које се добијају из 

(к-μ)×(к-μ) случајне променљиве као специјални случајеви. Добијени резултат може, 

такође, да се примени за анализу перформанси бежичних мобилних телекомуникационих 

система, где је анвелопа сигнала под утицајем два независна к-μ фединга. У овом случају 

се анвелопа сигнала може написати као производ две к-μ случајне променљиве.  

µ1=2, µ2=3, 

к1=3, к2=2 

µ1=2, µ2=1, 

к1=1, к2=2 

 

µ1=µ2=1, 

к1=к2=1 

 

Ω1=Ω2=1 
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На слици 3.8. дат је графички приказ добијених нумеричких резултата за PDF 

производа две к-μ случајне променљиве, на основу једначине (3.65), у зависности од 

анвелопе сигнала. Вредности параметара су : 11 Ω , 11 к , 11  , 12 Ω , 12 к , 12   

(плава крива); 11 Ω , 11 к , 21  , 12 Ω , 22 к , 12   (наранџаста крива); 12  ; 

11 Ω , 31 к , 21  , 12 Ω , 22 к , 32   (зелена крива), респективно. 

 

 
Слика 3.9. PDF производа две к-μ случајне променљиве. Вредности параметара су: 

21 Ω , 11 к , 11  , 12 Ω , 12 к , 12   (плава крива); 21 Ω , 11 к , 21  , 12 Ω , 

22 к , 12   (наранџаста крива); 21 Ω , 1к 3, 21  , 12 Ω , 22 к , 32   (зелена 

крива), респективно. 

  

 

 

Слика 3.10. Графички приказ густине вероватноће производа две к-μ случајне 

променљиве, за 11 Ω , 21 к , 11  , 12 Ω , 12 к , 22   и за број одмерака 1000, 

добијен симулацијом (хистограм) и нумерички (испрекидана линија), респективно. 

 

µ1=2, µ2=3, 

к1=3, к2=2 

µ1=2, µ2=1, 

к1=1, к2=2 

 

µ1= µ2=1, 

к1=к2=1 

 

Ω1=2 

Ω2=1 

 

Ω1=Ω2=1 

µ1=1, µ2=2, 

к1=2, к2=1 

 

N=1000 

(симулација) 
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На слици 3.9. дат је графички приказ добијених нумеричких резултата за PDF 

производа две к-μ случајне променљиве. Вредности параметара су: 21 Ω , 11 к , 11  , 

12 Ω , 12 к , 12   (плава крива); 21 Ω , 11 к , 21  , 12 Ω , 22 к , 12 

(наранџаста крива); 21 Ω , 1к 3, 21  , 12 Ω , 22 к , 32   (зелена крива), 

респективно. 

На слици 3.10. дат је графички приказ густине вероватноће (PDF) производа две 

к-μ случајне променљиве, за 11 Ω , 21 к , 11  , 12 Ω , 12 к , 22   и за број 

одмерака 1000, добијен симулацијом (хистограм) и нумерички (испрекидана линија), 

респективно. 

 

 

 
Слика 3.11. PDF производа две к-μ случајне променљиве, за вредности параметара 

11 Ω , 1к 2, 11  , 12 Ω , 32 к , 22  , N = 1000. 

 

 

 
Слика 3.12. PDF производа две к-μ случајне променљиве, за различите вредности 

параметара (дати на слици), где је N = 10000. 

 

Ω1=Ω2=1, 

µ1=1, µ2=2, 

к1=2, к2=3 

 

N=1000 

 

Нумерички 

резултати 

 

Ω1=Ω2=1, µ1=2, 

µ2=3, к1=3, к2=2 

 

Ω1=Ω2=1 

µ1= µ2=1 

к1=к2=1 

Ω1=Ω2=1 

µ1=2, µ2=1, 

к1=1, к2=2 
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На слици 3.11. приказан је хисторам и нумерички добијени резултати PDF 

производа две случајне променљиве. Вредности параметара су 11 Ω , 1к 2, 11  , 

12 Ω , 32 к , 22  , N = 1000. 

На слици 3.12. приказан је хисторам и нумерички добијени резултати PDF 

производа две случајне променљиве. Вредности параметара су дати на слици за сваки 

график, док је број одмерака N = 10000. 

 

 

 
Слика 3.13. PDF производа две к-μ случајне променљиве, за параметре Ω1=2, Ω2=1, 

µ1= µ2=1, к1=к2=1 (график1), Ω1=2, Ω2=1, µ1= 2, µ2=1, к1=1, к2=2 (график2), Ω1=2, Ω2=1, 

µ1= 2, µ2=3, к1=3, к2=2 (график3), респективно. Број одмерака је N =100000. 

 

  

 

 
Слика 3.14. CDF производа две к-μ случајне променљиве, за параметре Ω1=1, Ω2=1, 

µ1= µ2=1, к1=к2=1 (график1), Ω1=2, Ω2=1, µ1=2, µ2=1, к1=1, к2=2 (график2), Ω1=2, Ω2=1, 

µ1=2, µ2=3, к1=3, к2=2 (график3), респективно. Број одмерака је N =1000. 

Ω1=2, Ω2=1 

µ1= µ2=1 

к1=к2=1 

график1 

 

Ω1=2, Ω2=1, µ1=2, 

µ2=3, к1=3, к2=2 

график3 

Ω1=2, Ω2=1, µ1=2, 

µ2=1, к1=1, к2=2 

график2 

 

Ω1=2, Ω2=1 

µ1=2, µ2=1, 

к1=1, к2=2 

график2 

Ω1=1, 

Ω2=1 

µ1=µ2=1 

к1=к2=1 

график1 
Ω1=2, Ω2=1 

µ1=2, µ2=3, 

к1=3, к2=2 

график3 
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На слици 3.13. приказан је хисторам и нумерички добијени резултати PDF 

производа две случајне променљиве. Вредности параметара су дати на слици за сваки 

график, док је број одмерака N = 100000. 

На слици 3.14. дат је графички приказ симулационих резултата за CDF производа 

две к-μ случајне променљиве, за параметре Ω1=1, Ω2=1, µ1= µ2=1, к1=к2=1 (график1), 

Ω1=2, Ω2=1, µ1=2, µ2=1, к1=1, к2=2 (график2), Ω1=2, Ω2=1, µ1=2, µ2=3, к1=3, к2=2 

(график3), респективно. Број одмерака је N = 1000. При томе, једначина за CDF није 

аналитички израчуната због сложености формуле за PDF. 

Добијени резултат може, такође, да се примени за анализу перформанси 

бежичних мобилних телекомуникационих система где је анвелопа сигнала под утицајем 

два независна к-μ фединга. У овом случају се анвелопа сигнала може написати као 

производ две к-μ случајне променљиве.  

 

3.4 Количник к-μ случајне променљиве и производа две к-μ случајне променљиве 

Количник к-μ случајне променљиве и производа две к-μ случајне променљиве је: 

yz

x
w                                (3.66) 

Густина вероватноће од w је [6, 40, 88]:  
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Даљим развојем једначина (3.9) и (3.10) добија се интеграл у који се уводи смена: 

 
  1

133

22

311

1

1
y

Ωк

ywΩк









 , 

 
  12

311

1332

1

1
y

wΩк

Ωк
y








 

 
  12

311

133

1

1

2

1
dy

wΩк

Ωк
dyy









.                            (3.70) 

Он се може решити на следећи начин [1, 6, 52]:  
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За посматрани случај је: 
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Тада је густина вероватноће за посматрани случај: 
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          Статистичке карактеристике количника к-μ случајне променљиве и производа две 

к-μ случајне променљиве користе се за израчунавање перформанси бежичних 

телекомуникационих система [41, 100]. Густина вероватноће разматраног количника је 

урађена трансформационом методом и дат је затворени облик ове густине вероватноће у 

зависности од хипергеометријских функција. Тако добијена густина вероватноће може 
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се користити за израчунавање кумулативне вероватноће, карактеристичне функције и 

момената односа к-μ случајне променљиве и производа две к-μ случајне променљиве [41, 

50]. При томе, (к-μ)/(к-μ)×(к-μ) случајна променљива такође представља случајну 

променљиву која има шест параметара: 1к , 2к , 3к , 1 , 2 , 3 . Као и у претходним 

случајевима, од (к-μ)/(к-μ)×(к-μ) расподеле могу се добити друге расподеле за различите 

комбинације и вредности наведених параметара. Када је 1к = 2к = 3к = 0, (к-μ)/(к-μ)×(к-μ) 

расподела прелази у Накагами-m/Накагами-m×Накагами-m расподелу. Када је 1 = 2 =

3 = 1, Рајсова/Рајсова×Рајсова расподела може да се изведе из (к-μ)/(к-μ)×(к-μ) 

расподеле. Када је 1 = 2 = 3 = 1 и 1к = 2к = 3к = 0, онда Рејлијева/Рејлијева×Рејлијева 

расподела може да се изведе из (к-μ)/(к-μ)×(к-μ) расподеле. Бежични канал који може да 

се опише са (к-μ)/(к-μ)×(к-μ) расподелом назива се (к-μ)/(к-μ)×(к-μ) канал. Када је 01 к , 

или 1 = 1, или 01 к  и 1 = 1, онда (к-μ)/(к-μ)×(к-μ) канал прелази у Накагами-m/(к-

μ)×(к-μ), Рајсов/(к-μ)×(к-μ) или Рејлијев/(к-μ)×(к-μ) канал, респективно. Статистика 

односа к-μ случајне променљиве може се применити за израчунавање перформанси 

бежичних система у присуству к-μ фединга и међуканалне интерференције. При томе, 

ова међуканална интерференција потиче од бежичног релејног система са две деонице 

на којима је присутан к-μ фединг. На међуканалну интерференцију имају утицај два 

независна к-μ фединга. У овом случају се анвелопа међуканалне интерференције може 

представити као производ две случајне променљиве, од којих свака има к-μ расподелу. 

Тада, помоћу густине вероватноће може се одредити вероватноћа грешке предложеног 

система, а помоћу кумулативне вероватноће може се одредити вероватноћа отказа, као и 

капацитет канала [34, 39].  

 

 

 

Слика 3.15. PDF количника к-μ случајне променљиве и производа две к-μ случајне 

променљиве, за различите вредности параметара (дати на слици). 

 

Графички приказ нумеричких резултата за PDF количника к-μ случајне 

променљиве и производа две к-μ случајне променљиве (слика 3.15.) добијен је 

интерполацијом, на основу једначине (3.17), у програму Wolfram Mathematica 12.2. При 

томе, дат је само један график, због сложености једначине за количник к-μ случајне 

променљиве и производа к-μ случајне променљиве, добијене у затвореном облику, за 

параметре 11 Ω , 1к 1, 5.11  , 12 Ω , 3.12 к , 12  , 13 Ω , 3к 1.2, 1.13  . На 

тај начин, графички је извршена провера тачности једначине (3.17).  

Нумерички 

резултати 

 

Ω1=Ω2=Ω3=1 

µ1=1.5, µ2=1, µ3=1.1 
к1=1, к2=1.3, к3=1.2 
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3.5 Количник производа две к-μ случајне променљиве и к-μ случајне променљиве 

Количник производа две к-μ случајне променљиве и к-μ случајне променљиве је: 

z

xy
w                                 (3.77) 

Тада је густина вероватноће од w  [1, 52]:  
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Статистичке карактеристике количника производа две к-μ случајне променљиве 

и к-μ случајне променљиве имају примену код анализе перформанси бежичних мобилних 

телекомуникационих радио система [69, 75]. Густина вероватноће се може израчунати у 

затвореном облику применом хипергеометријских функција и Гама функција. 

Трансформационом методом се одређује густина вероватноће количника производа две 

к-μ случајне променљиве и к-μ случајне променљиве. Одговарајућом интеграцијом се 

добија густина вероватноће разматраног количника. Случајна променљива чија је 

расподела једнака количнику производа две к-μ случајно променљиве и к-μ случајне 

променљиве означава се као (к-μ)×(к-μ)/(к-μ) случајна променљива. Тада, бежични канал 

који може да се опише са овом расподелом означава се као (к-μ)×(к-μ)/(к-μ) фединг канал. 

Овај канал има шест параметара: 1к , 2к , 3к , 1 , 2 , 3 . За 1к = 2к = 3к = 0, (к-μ)×(к-μ)/(к-μ) 

фединг канал прелази у Накагами-m×Накагами-m/Накагами-m фединг канал. Када је 1

= 2 = 3 = 1, онда (к-μ)×(к-μ)/(к-μ) фединг канал постаје Рајсов×Рајсов/Рајсов фединг 

канал [54]. За 1к = 2к = 3к = 0 и 1 = 2 = 3 = 1, (к-μ)×(к-μ)/(к-μ) фединг канал прелази у 

Рејлијев×Рејлијев/Рејлијев фединг канал [101]. За 11  и 12  , (к-μ)×(к-μ)/(к-μ) 

расподела прелази у Рајсову×Рајсову/(к-μ) расподелу. За 1к = 2к = 0, Накагами-

m×Накагами-m/(к-μ) расподела може бити изведена из (к-μ)×(к-μ)/(к-μ) расподеле, а за 

1 = 2 =1 и 1к = 2к = 0 Рејлијева×Рејлијева/(к-μ) расподела апроксимира (к-μ)×(к-μ)/(к-μ) 

расподелу [42]. Добијени резултати могу да се примене за анализу перформанси 

бежичног релејног система са две деонице на којима су присутни к-μ фединг и 

међуканална интерференција која је под његовим утицајем . Тада је анвелопа сигнала на 

излазу из релејног система једнака производу две к-μ случајне променљиве, а однос 

сигнала и интерференције може се представити као однос производа две к-μ случајне 

променљиве и к-μ случајне променљиве [92]. Добијени резултати, такође, могу се 

применти код бежичних система чији је сигнал под утицајем два независна к-μ фединга, 

а присутна је к-μ међуканална интерференција [32, 35].  

 

 
 

Слика 3.16. PDF количника производа две к-μ случајне променљиве и к-μ случајне 

променљиве, за различите вредности параметара (дати на слици).  

 

Графички приказ нумеричких резултата за PDF количника производа две к-μ 

случајне променљиве и к-μ случајне променљиве (слика 3.16.) добијен је 

интерполацијом, на основу једначине (3.21), у програму Wolfram Mathematica 12.2. При 

томе, дат је само један график, због сложености једначине за количник производа две к-
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μ случајне променљиве и к-μ случајне променљиве, добијене у затвореном облику, за 

параметре 11 Ω , 1к 1, 5.11  , 12 Ω , 3.12 к , 12  , 13 Ω , 3к 1.2, 1.13  . На 

тај начин, графички је извршена провера тачности једначине (3.21).  

У трећој глави је разматран к-μ случајни процес. У овој глави одређенe су густина 

вероватноће (PDF) и кумулативна вероватноћа (CDF) к-μ случајне променљиве х, 

карактеристична функција од х, момент n-тог реда, средња вредност, средња квадратна 

вредност, варијанса од х, средњи број осних пресека од х. Дат је графички приказ 

нумеричких резултата за PDF к-μ случајне променљиве х, за број кластера 2 , који је 

упоређен са симулационим резултатима (хистограм), за број одмерака N = 100000, где се 

види добро поклапање истих. Одређени су PDF и CDF количника две к-μ случајне 

променљиве yxz /  и средњи број осних пресека. Дат је графички приказ нумеричких 

и симулационих резултата за PDF од z, за одређене вредности параметара и број одмерака 

N = 1000, 10000 и 100000, респективно, где се може видети добро поклапање већ при 

N = 10000. При томе, за број одмерака N = 100000 добијено је најбоље поклапање 

нумеричких и симулационих резултата . Поред тога, дат је графички приказ нумеричких 

резултата за CDF од z у зависности од анвелопе сигнала. Израчунат је и средњи број 

осних пресека од z. За производ две к-μ случајне променљиве прорачуната је PDF у 

затвореном облику. При томе, дат је графички приказ нумеричких и симулационих 

резултата за PDF, за одређене вредности параметара и број одмерака N = 1000, 10000 и 

100000, респективно, где се може видети добро поклапање већ при N = 10000. Поред тога, 

дат је графички приказ и нумеричких резултата за CDF у зависности од анвелопе сигнала. 

PDF од количника к-μ случајне променљиве и производа две к-μ случајне променљиве је 

одређена аналитички, где је због сложености једначине графички приказ нумеричких 

резултата добијен интерполацијом. На исти начин је одређена PDF од количника 

производа две к-μ случајне променљиве и к-μ случајне променљиве. Иначе, за графички 

приказ резултата је коришћен програм Wolfram Mathematica 12.2.  
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4. АНАЛИЗА СТАТИСТИЧКИХ ЕФЕКАТА БРЗОГ ФЕДИНГА СА ИЗРАЖЕНОМ 

ДОМИНАНТНОМ КОМПОНЕНТОМ СПОРОГ ФЕДИНГА И МЕЂУКАНАЛНЕ 

ИНТЕРФЕРЕНЦИЈЕ 

 У овој глави ће се разматрати перформансе првог реда бежичног 

телекомуникационог система у присуству брзог фединга са јаком доминантном 

компонентом спорог фединга и међуканалне интерференције. Доминантна компонента 

је талас директне видљивости између предајника и пријемника. Расподеле које описују 

анвелопу сигнала када постоји доминантна компонента су Рајсова расподела и к-μ 

расподела. Када постоји једна доминантна компонента онда је анвелопа описана са 

Рајсовом расподелом, а када постоји више доминантних компоненти онда је анвелопа 

сигнала описана са к-μ расподелом. У глави су разматрани случајеви када Гама спори 

фединг има утицаја на корисни сигнал и случај када Гама спори фединг има утицаја на 

међуканалну интерференцију [53, 99]. Када Гама спори фединг има утицаја на корисни 

сигнал, онда се квадрат еквивалентног корисног сигнала може написати као производ 

две случајне променљиве, од којих једна има Гама расподелу, а друга случајна 

променљива има расподелу брзог фединга, односно за наш случај има Рајсову или к-μ 

расподелу [58]. Ово је због тога што спори фединг утиче на снагу корисног сигнала. На 

основу овога, анвелопа корисног сигнала може да се напише као производ две случајне 

променљиве, од којих једна има расподелу квадратног корена Гама расподеле, а друга 

има расподелу брзог фединга. Када спори Гама фединг има утицаја само на корисни 

сигнал и, при томе, присутан је Рајсов брзи фединг и Рајсова интерференција, онда треба 

разматрати статистичке карактеристике количника производа случајне променљиве која 

има густину вероватноће квадратног корена Гама расподеле и случајне променљиве која 

има Рајсову расподелу, а у имениоцу је Рајсова случајна променљива која моделује 

међуканалну интерференцију. За овај однос у раду је добијен затворени облик за густину 

вероватноће, карактеристичну функцију и моменте. У овој глави је, такође, разматран 

количник производа квадратног корена Гама случајне променљиве и к-μ случајне 

променљиве, и к-μ случајне променљиве. И за овај количник су израчунате густина 

вероватноће, карактеристична функција и моменти.  

 Други случај који је разматран у овој глави је случај када је корисни сигнал под 

утицајем брзог фединга, а међуканална интерференција је под утицајем брзог и Гама 

спорог фединга. У овом случају се разматра количник од производа квадратног корена 

Гама случајне променљиве и Рајсова случајне променљиве, и Рајсове случајне 

променљиве, као и количник од к-μ случајне променљиве и производа од квадратног 

корена Гама случајне променљиве и к-μ случајне променљиве. За ове количнике су у раду 

изведени затворени облици за густину вероватноће разматраних количника, 

карактеристичне функције количника и моменти разматраних количника. Ове функције 

су изведене у зависности од хипергеометријских функција и конфлуентних 

хипергеометријских функција [6]. 

 Трећи случај који је у овој глави разматран је случај када је и корисни сигнал и 

међуканална интерференција захваћена ефектом сенке. За овај модел је потребно 

разматрати количник два производа од квадратног корена Гама случајне променљиве и 

к-μ случајне променљиве. У овом случају се корисни сигнал простире кроз канал са 

брзим и спорим федингом, а канал кроз који се простире међуканална интерференција 

такође има спори и брзи фединг. У свим овим случајевима су изведени изрази за 

статистичке карактеристике количника корисног сигнала и интерференције. Овај однос 

је нарочито значајан у мобилним ћелијским конфигурацијама које су интерференцијом 

ограничене, односно Гаусов шум се може занемарити. Сви ови изрази се могу 

употребити за израчунавање вероватноће отказа, вероватноће грешке и капацитета 

канала. Корисни сигнал је под утицајем брзог Рајсовог фединга и спорог Гама фединга, 
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а интерференција је под утицајем брзог Рајсовог фединга. Према овом моделу однос 

сигнала и интерференције једнак је количнику производа од квадратног корена Гама 

случајне променљиве и Рајсове случајне променљиве, и Рајсове случајне променљиве 

[83]. 

 

4.1 Однос производа квадратног корена Гама случајне променљиве и к-μ случајне 

променљиве, и к-μ случајне променљиве  

У овом одељку се разматра количник производа квадратног корена Гама случајне 

променљиве и к-μ случајне променљиве, и к-μ случајне променљиве. Случајна 

променљива која има квадратни корен Гама расподеле је Накагами-m случајна 

променљива [66, 71]. Ово се може показати трансформационом методом. 

Трансформационом методом ће се прво одредити густина вероватноће односа 

квадратног корена Гама променљиве и к-μ променљиве, и к-μ променљиве. Полази се од 

двоструког интеграла. За густину вероватноће се добија затворени облик. Примењују се 

две формуле које садрже хипергеометриjску функцију и конфлуентну 

хипергеометриjску функцију. Добијени израз за густину вероватноће разматраног 

количника може да се примени у интерференцијом ограниченим бежичним фединг 

каналима. Интерференцијом ограничени фединг канал се појављује у ћелијским 

телекомуникационим системима који имају примену за повећање капацитета система. 

Капацитет система расте када се повећава број ћелија, али се у овом случају повећава и 

међуканална интерференција. Између ова два услова се тражи компромис [33]. Другим 

речима, дозвољава се да капацитет система расте док се перформансе система не 

погоршају до одређене вредности због међуканалне интерференције. Због овога је веома 

значајно разматрати вероватноћу грешке, вероватноћу отказа и капацитет канала у 

бежичним системима који су интерференцијом ограничени, а присутна је међуканална 

интерференција. Помоћу густине вероватноће је одређена кумулативна вероватноћа, 

карактеристична функција, моменти, средња вредност, средња квадратна вредност и 

варијанса од односа производа квадратног корена Гама променљиве и к-μ случајне 

променљиве [66, 67]. Помоћу добијеног израза за кумулативну вероватноћу, може да се 

одреди вероватноћа отказа бежичног дигиталног система са две деонице где је у једној 

деоници присутан Накагами-m фединг, а у другој деоници је присутан к-μ фединг и 

присутна је међуканална интерференција, која потиче од канала са к-μ федингом. За овај 

систем може да се одреди и вероватноћа грешке за кохерентне и некохерентне 

модулационе шеме. 

Однос сигнала и интерференције је једнак: 

z

yx
w


      ,     

y

zw
x


                    (4.1) 

Случајна променљива x је једнака: 

2

1

1xx       ,     ,2

1 xx       x
dx

dx
21                    (4.2) 

где је 1x  Гама случајна променљива. Ова случајнa променљива моделује спори фединг 

који настаје због ефекта сенке [31]. Ефекат сенке има утицај на снагу сигнала. Укупна 

снага сигнала једнака је производу Гама случајне променљиве и квадрата случајне 

променљиве која има расподелу брзог фединга. Густина вероватноће од случајне 

променљиве x је: 
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)()( 1
1

1
xp

dx

dx
xp xx                      (4.3) 

где је густина вероватноће од 1x  једнака [44]: 
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Трансформационом методом може се добити густина вероватноће случајне 

променљиве x у облику [44, 58]: 
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 При томе, разматран је случај када случајна променљива y има Рајсову расподелу 

[105]: 
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Анвелопа међуканалне интерференције такође има Рајсову густину вероватноће. 

Снага међуканалне интерференције је константна. Густина вероватноће од z је: 
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 У претходним изразима 1к  је Рајсов фактор анвелопе корисног сигнала, 2к  је 

Рајсов фактор међуканалне интерференције, 1Ω  је средња снага анвелопе корисног 

сигнала, 2Ω  је средња снага анвелопе интерференције, а )(xIn  је модификована Беселова 

функција прве врсте n–ог реда и аргумента x. Густина вероватноће количника производа 

квадратног корена Гама расподеле и Рајсове случајне променљиве, и Рајсове случајне 

променљиве је [38, 44]: 
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Интеграл 1J  је једнак: 
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Примењујући формулу [1, 30]: 
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претходни интеграл се може написати у облику: 
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Да би се решио претходни интеграл, примењује се формула: 
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За разматрани случај је: 
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Заменом се добија: 
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Заменом се добија густина вероватноће од w у облику: 
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Овако добијена густинa вероватноће може се користити за израчунавање 

кумулативне вероватноће, карактеристичне функције и момената од случајне 

променљиве w. Моменти се даље могу користити за добијање средње вредности, средње 

квадратне вредности и варијансе променљиве. Перформансе код бежичног 

телекомуникационог система у коме су присутни брзи Рајсов фединг, спори Гама фединг 

и међуканална интерференција могу се такође одредити. Тако, може се одредити 

вероватноћа отказа, капацитет канала и вероватноћа грешке за кохерентне и 

некохерентне модулационе формате. Такође, може се одредити здружена густина 

вероватноће за случајну променљиву w и њен први извод [34, 36, 58]. 

 Добијени резултати могу се применити у две врсте бежичних дигиталних 

телекомуникационих система. У прву врсту спада бежични релејни телекомуникациони 

систем са две деонице, где је на једној деоници присутан Накагами-m фединг, а на другој 

деоници је присутан к-μ фединг. Анвелопа сигнала на излазу из релејног система са две 

деонице једнака је производу две случајне променљиве, од којих једна има Накагами-m 

расподелу, а друга има к-μ расподелу. Међуканална интерференција је присутна у 

Рејлијевом каналу и потиче из канала у коме је присутан к-μ фединг. Однос сигнала и 

интерференције, за овај модел, једнак је количнику производа Накагами-m случајне 

променљиве и к-μ случајне променљиве, и к-μ случајне променљиве. У интерференцијом 

ограниченој околини овај однос је важна мера перформанси система помоћу чије 

статистике се може одредити вероватноћа грешке система, вероватноћа отказа система и 

капацитет канала [65, 88]. 

 Други модел који се може анализирати помоћу добијених резултата је бежични 

мобилни телекомуникациони систем који ради у каналу у коме је присутан спори Гама 

фединг и брзи к-μ фединг, а такође је присутна и к-μ међуканална интерференција. У 

овом случају се квадрат анвелопе сигнала може написати као производ Гама случајне 

променљиве и квадриране к-μ случајне променљиве. На основу овога је анвелопа 

корисног сигнала једнака производу две случајне променљиве, од којих једна има 

квадратни корен Гама расподеле, а друга има к-μ расподелу. Анвелопа међуканалне 

интерференције има к-μ расподелу. Однос анвелопа корисног сигнала и међуканалне 

интерференције, у овом моделу, једнак је количнику од производа квадратног корена 

Гама случајне променљиве и к-μ случајне променљиве, и к-μ случајне променљиве. 

Претходни изрази су нумерички обрађени и објашњени, а резултати су приказани 

на дијаграмима. 

 

4.2 Однос к-μ случајне променљиве и производа квадратног корена Гама случајне 

променљиве и к-μ случајне променљиве 

У овом одељку се разматра количник к-μ случајне променљиве и производa 

квадратног корена Гама случајне променљиве и к-μ случајне променљиве. Код бежичних 

телекомуникационих система овај количник може представљати однос сигнала и 

интерференције. Овај однос је веома важан код ћелијских система. Ови системи су 
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интерференцијом ограничени. Добијени изрази могу се применити код бежичних 

система који раде у каналу са к-μ федингом, а присутна је и међуканална интерференција. 

Међуканална интерференција потиче од бежичног релејног система са две деонице где 

је на једној деоници присутан Накагами-m фединг, а на другој деоници присутан је к-μ 

фединг. При томе, добијени су изрази за густину вероватноће, кумулативну вероватноћу, 

карактеристичну функцију и моменте односа к-μ случајне променљиве и Накагами-m 

случајне променљиве [65, 66]. Показано је да су Накагами-m случајна променљива и 

квадратни корен случајно променљиве исте случајне променљиве. Помоћу густине 

вероватноће се рачуна вероватноћа грешке за кохерентне и некохерентне модулационе 

шеме, а помоћу кумулативне вероватноће се одређује вероватноћа отказа у каналу. 

Капацитет канала се одређује помоћу густине вероватноће. Случајна променљива која се 

рачуна као количник к-μ случајне променљиве и производа Накагами-m случајне 

променљиве и к-μ случајне променљиве се означава као (к-μ)/(Накагами-m)×(к-μ) 

случајна променљива. За 01 к  и 02 к , бежични (к-μ)/(Накагами-m)×(к-μ) канал постаје 

(Накагами-m)/(Накагами-m)×(Накагами-m) бежични канал, а за 11   и 12  , (к-

μ)/(Накагами-m)×(к-μ) фединг канал постаје Рајсов/(Накагами-m)×(Рајсов) фединг канал. 

За m = 1, 11   и 12  , (к-μ)/(Накагами-m)×(к-μ) фединг канал постаје 

(Рајсов)/(Рејлијев)×(Рајсов) фединг канал, а за m = 1, 11  , 01 к , 12   и 02 к , (к-

μ)/(Накагами-m)×(к-μ) фединг канал постаје (Рејлијев)/(Рејлијев)×(Рејлијев) фединг 

канал [52, 104]. Добијени резултати могу се применити за одређивање перформанси 

система који раде у свим каналима који су набројани, а који су специјални случајеви 

канала који је овде разматран. Може се, такође, израчунати средњи број осних пресека 

случајног процеса односа к-μ случајног процеса и производа Накагами-m случајног 

процеса и к-μ случајног процеса. 

Корисни сигнал је под утицајем брзог к-μ фединга и међуканалне интерференције. 

За разматрани модел однос анвелопа сигнала и међуканалне интерференције је једнак: 
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Случајна променљива y је једнака: 
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Случајна променљива 1y  има Гама густину вероватноће [44]: 
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где је 1c  Гама параметар, а 1 средња снага од 1y . Густина вероватноће од y је [44, 58]: 
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У овом делу рада разматран је случај када случајна променљива x има к-µ 

расподелу [1, 9, 37, 44, 58]: 
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Густина вероватноће од z такође има к-µ расподелу [9, 37, 44]: 
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У претходним изразима су 1к  и 2к  Рајсови фактори корисног сигнала и 

међуканалне интерференције, 1  и 2  су оштрине фединга корисног сигнала и 

међуканалне интерференције, а 1Ω  и 2Ω  су средње снаге корисног сигнала и 

међуканалне интерференције. Густина вероватноће количника к-µ случајне променљиве 

и производа квадратног корена Гама случајне променљиве и к-µ случајне променљиве 

је: 

 


)()()()(
00

zpypwyzpzydzdywp zyxw  

= 



00

zydzdy
2

1

1

)1(
2

1

11

1

11

2

1
111

)1(2



















к

eк
к

Ω

wyz
к

 
  










0

12

111

1111

11

)1(
!

1

i

i

кк
iΓi






 


 11 22

1

1
i

Ω
  

 122 11 i
wyz 

1

11)(

2
c

cΓ 


12 1c
y 

 2

1

1
y

e
 














2

1

2

)1(
2

1

22

2

22

2

2
222

)1(2






к

eк
к

Ω

z
к

 
  










0

12

222

2222

22

)1(
!

1

i

i

кк
iΓi







 22 22

2

1
i

Ω

122 22  i
z = 

= 






 00 21 ii




00

zydzdy 






2

1

1

2

1

11

1

1

)1(2






к

к


 11кe 








 2

2

1
11 )1( z

Ω

wy
к

e


 

 
  




 12

111

111

11

)1(
!

1 




i

кк
iΓi


 11 22

1

1
i

Ω
  

 122 11 i
wy 

 122 11 i
z 

1

11)(

2
c

cΓ 


12 1c
y 

 2

1

1
y

e









2

1

2

2

1

22

2

2

)1(2






к

к


 22к
e

2

2
2

22

1
)1( z
Ω

к

e


 
  12

222

222

22

)1(
!

1 









i

кк
iΓi


 22 22

2

1
i

Ω

122 22  i
z                         

                      (4.24) 

 



 

60 

 

 


0

dzI 








 2

2

1
11 )1( z

Ω

wy
к

e


2

2
2

22

1
)1( z
Ω

к

e


12222 2121 


ii
z                  (4.25) 

Претходни интеграл се решава применом формуле: 
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Уводи се смена: 
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Интеграл 2I  се решава применом формуле: 
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где је 11 111  cia   , 111 cia    , 21211   iiba  , 
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 Добијени резултати могу се применити за два модела бежичних мобилних 

телекомуникационих система. У првом моделу корисни сигнал пролази кроз к-μ фединг 

канал, а међуканална интерференција потиче од бежичног релејног телекомуникационог 

радио система који има две деонице, где је на једној деоници присутан Накагами-m 

фединг, а на другој деоници је присутан брзи к-μ фединг. У овом случају, квадрат 

анвелопе међуканалне интерференције једнак је производу две случајне променљиве, од 

којих једна има Гама расподелу, а друга има квадрат к-μ расподеле. На основу овога, 

анвелопа међуканалне интерференције једнака је производу Накагами-m случајне 

променљиве и к-μ случајне променљиве. Однос анвелопа корисног сигнала и 

интерференције једнак је количнику од к-μ случајне променљиве и производа од 

Накагами-m случајне променљиве и к-μ случајне променљиве. У интерференцијом 

ограниченој околини ово је важна мера перформанси система. Може се израчунати 

густина вероватноће, кумулативна вероватноћа, карактеристична функција, моменти, 

средња вредност, средња квадратна вредност и варијанса. Такође, могу да се одреде: 

вероватноћа отказа, вероватноћа грешке, капацитет канала, здружена густина 

вероватноће од односа сигнала и интерференције и његовог првог извода, као и средњи 

број осних пресека од случајног процеса односа анвелопа корисног сигнала и 

интерференције. 

 Други модел где се могу применити добијени резултати је код бежичног 

телекомуникационог система који ради у каналу са к-μ федингом, а међуканална 

интерференција је из канала у коме је присутан спори Гама фединг и брзи к-μ фединг. У 

овом случају је квадрат анвелопе, односно снага анвелопе, једнака производу две 

случајне променљиве, од којих једна има Гама расподелу, а друга има квадрат к-μ 

расподеле. На основу овога, анвелопа интерференције може да се напише као производ 

две случајне променљиве, од којих једна има квадратни корен Гама расподеле, а друга 

има к-μ расподелу. Однос сигнала и интерференције за овај модел једнак је количнику к-

μ случајне променљиве и производа квадратног корена Гама случајне променљиве и к-μ 

случајне променљиве [22, 23]. 

 

4.3 Однос два производа од квадратног корена Гама случајне променљиве и к-μ 

случајне променљиве 

У овом одељку је разматран количник два производа од квадратног корена Гама 

случајне променљиве и к-μ случајне променљиве. Пошто је показано да квадратни корен 

Гама случајне променљиве и Накагами-m случајне променљиве су исто случајне 

променљиве, може да се каже да се у овом случају разматра однос два производа од 

Накагами-m случајне променљиве и к-μ случајне променљиве. При томе, од предложеног 

количника је добијена густина вероватноће, кумулативна вероватноћа, карактеристична 

функција, средња вредност, средња квадратна вредност и варијанса. Сви резултати могу 

да се примене за анализу перформанси бежичног релејног телекомуникационог система 

са две секције, где је на једној секцији присутан Накагами-m фединг, а на другој секцији 

присутан је к-μ фединг. Међуканална интерференција је присутна и потиче од другог 

бежичног релејног система са две секције, где је на једној секцији присутан Накагами-m 

фединг, а на другој секцији је присутан к-μ брзи фединг. Анвелопа сигнала на излазу из 

релејног система може да се напише као производ две случајне променљиве, од којих 

једна има Накагами-m расподелу, а друга има к-μ расподелу.  

 Случајна променљива која може да се напише као количник од два производа 

Накагами-m и к-μ случајне променљиве може да се означи као (Накагами-m)×(к-

μ)/(Накагами-m)×(к-μ). Тада, описани бежични канал може да се назове (Накагами-

m)×(к-μ)/(Накагами-m)/(к-μ) фединг канал. Тако, када је 121   , (Накагами-m)×(к-

μ)/(Накагами-m)×(к-μ) фединг канал прелази у (Накагами-m)×(Рајсов)/(Накагами-
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m)×(Рајсов) фединг канал. А када је 01 к  и 02 к , (Накагами-m)×(к-μ)/(Накагами-m)/(к-

μ) фединг канал прелази у (Накагами-m)×(Накагами-m)/(Накагами-m)×(Накагами-m) 

фединг канал. Када је m = 1, 01 к , 02 к , 11   и 12  , (Накагами-m)×(к-

μ)/(Накагами-m)/(к-μ) фединг канал постаје (Рејлијев)×(Рејлијев)/(Рејлијев)×(Рејлијев) 

канал. Када је 1к , 2к , 1m  и 2m  , онда (Накагами-m)×(к-μ)/(Накагами-

m)/(к-μ) фединг канал постаје канал без присуства фединга. При томе, добијени израз за 

густину вероватноће може да се примени за израчунавање густине вероватноће за све 

набројане канале [58, 80]. 

Разматра се случајна променљива w која је једнака: 
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Случајна променљива x је једнака: 
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1 xx                    (4.40) 

где је 1x  Гама случајна променљива [44]: 
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Густина вероватноће од x је [44, 58]: 
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Случајна променљива y има к  расподелу [9, 37, 92]: 
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Случајна променљива z је једнака: 
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2/1

1zz  , 
2

1 zz                    (4.46) 

где је 1z  Гама случајна променљива [44]: 
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Густина вероватноће од z је једнака [44]: 
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Густина вероватноће од t је [9, 37, 44]: 
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Густина вероватноће од w је: 
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Претходни интеграл се решава применом следеће формуле: 
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где је  
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Густина вероватноће се сада може написати као: 
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При томе, решавамо интеграл следећег облика: 
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Интеграл се решава применом формуле: 
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где је: 

1221 ciba   , bcicc  12221 1  , 222 1  icb . 
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Надаље решавамо интеграл облика: 
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Уводи се смена: 
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Интеграл се решава применом формуле: 
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где је: 
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Решење интеграла је: 
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Коначни израз за израчунавање густине вероватноће је следећег облика: 
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                    (4.66) 

На слици 4.1. дат је графички приказ нумеричких резултата за PDF, добијених на 

основу једначине (4.66), у програму Wolfram Mathematica 12.2, за однос два производа 

од квадратног корена Гама случајне променљиве и к-μ случајне променљиве, за 

вредности параметара , 1, , , , , , , , 

 (плави график); , 1, , , , , , , 

,  (зелени график); , 3, , , , ,  , , 

 ,  (наранџасти график), респективно. 

На слици 4.2. дат је графички приказ нумеричких резултата за CDF, добијених на 

основу једначине (4.66), у програму Wolfram Mathematica 12.2, за однос два производа 

од квадратног корена Гама случајне променљиве и к-μ случајне променљиве, за 

вредности параметара , 1, , , , , , , , 

 (плави график); , 1, , , , , , ,  , 

11 Ω 1к 11  12 Ω 12 к 12  11 c 12 c 11 

12  11 Ω 1к 21  12 Ω 22 к 12  21 c 12 c 21 

12  11 Ω 1к 21  12 Ω 22 к 32  21 c 12 c

21  32 

11 Ω 1к 11  12 Ω 12 к 12  11 c 12 c 11 

12  11 Ω 1к 21  12 Ω 22 к 12  21 c 12 c 21 
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 (зелени график); , 3, , , , ,  , , 

 ,  (наранџасти график), респективно. 

 

  

 

Слика 4.1. Графички приказ нумеричких резултата за PDF, за однос два производа 

квадратног корена од Гама случајне променљиве и к-μ случајне променљиве, за 

вредности параметара 11 Ω , 1к 1, 11  , 12 Ω , 12 к , 12  , 11 c , 12 c , 11  , 

12   (плави график); 11 Ω , 1к 1, 21  , 12 Ω , 22 к , 12  , 21 c , 12 c , 21   , 

12   (зелени график); 11 Ω , 1к 3, 21  , 12 Ω , 22 к , 32  , 21 c  , 12 c , 

21   , 32   (наранџасти график), респективно. 

 

Добијени резултати могу да се примене за анализу перформанси бежичног 

мобилног телекомуникационог радио система који користи релеје за пренос 

информација. Релејни систем има две секције на којима је присутан к-μ брзи фединг на 

једној секцији и Накагами-m фединг на другој секцији. У овом случају је анвелопа 

сигнала на излазу из релејног система једнака производу две случајне променљиве, од 

којих једна има к-μ густину вероватноће, а друга има Накагами-m густину вероватноће. 

Међуканална интерференција потиче такође од релејног система са две деонице [89, 90]. 

На једној деоници је присутан Накагами-m фединг, а на другој је присутан к-μ фединг. 

Анвелопа међуканалне интерференције једнака је производу две случајне променљиве, 

од којих једна има Накагами-m расподелу. Однос анвелопа корисног сигнала и 

међуканалне интерференције једнак је количнику два производа, Накагами-m случајне 

променљиве и к-μ случајне променљиве. У интерференцијом ограниченој околини 

помоћу овог количника може да се одреди густина вероватноће односа сигнала и 

интерференције, кумулативна вероватноћа односа сигнала и интерференције, 

карактеристична функција односа сигнала и интерференције и моменти односа сигнала 

и интерференције. Помоћу односа сигнала и интерференције може да се одреди 

вероватноћа грешке и капацитет канала, а помоћу кумулативне вероватноће може да се 

одреди вероватноћа отказа релејног система са две деонице, где је у једној деоници 

присутан Накагами-m фединг, а у другој деоници је присутан к-μ фединг [35, 60, 80]. 

 

12  11 Ω 1к 21  12 Ω 22 к 32  21 c 12 c

21  32 

Ω1=1, к1=1, µ1= 2 , Ω2=1, к2=2, 

µ2=1, c1=2 , c2=1, β1=2, β2=1 

Ω1=1, к1=1, µ1= 1 , Ω2=1, к2=1, 

µ2=1, c1=1 , c2=1, β1=1, β2=1 

Ω1=1, к1=3, µ1= 2 , Ω2=1, к2=2, 

µ2=3, c1=2 , c2=1 β1=2, β2=3 
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Слика 4.2. Графички приказ нумеричких резултата за CDF, за однос два производа од 

квадратног корена Гама случајне променљиве и к-μ случајне променљиве, за вредности 

параметара 11 Ω , 1к 1, 11  , 12 Ω , 12 к , 12  , 11 c , 12 c , 11  , 12   (плави 

график); 11 Ω , 1к 1, 21  , 12 Ω , 22 к , 12  , 21 c , 12 c , 21  , 12   (зелени 

график); 11 Ω , 1к 3, 21  , 12 Ω , 22 к , 32  , 21 c  , 12 c , 21  , 32   

(наранџасти график), респективно.  

 

 На основу свега, може се констатовати да је у овој глави одређена густина 

вероватноће аналитички за однос производа квадратног корена Гама расподеле и к-μ 

расподеле, и к-μ расподеле. Поред тога, аналитички је одређена густина вероватноће за 

однос к-μ случајне промењиве и производа квадратног корена Гама случајне промењиве 

и к-μ случајне промењиве. За два производа од квадратног корена Гама случајне 

промењиве и к-μ случајне промењиве, такође, одређена је густина вероватноће 

аналитички и, при томе, дат је графички приказ нумеричких резултата. За овај случај, 

CDF није одређена аналитички због сложености једначине, али је одређена нумерички и, 

при томе, дат је графички приказ уз помоћ програма Wolfram Mathematica 12.2. 

  

Ω1=1, к1=1, µ1= 2 , 

Ω2=1, к2=2, µ2=1, 

c1=2 , c2=1, β1=2, 

β2=1 
 

Ω1=1, к1=3, µ1= 2 , 

Ω2=1, к2=2, µ2=3, c1=2 , 

c2=1, β1=2, β2=3 

 

Ω1=1, к1=1, 

µ1= 1 , 

Ω2=1, к2=1, 

µ2=1, c1=1 , 

c2=1, β1=1, 

β2=1 
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5. МАКРОДИВЕРЗИТИ СИСТЕМИ У ПРИСУСТВУ БРЗОГ к-μ ФЕДИНГА И 

СПОРОГ ГАМА ФЕДИНГА 

 Макродиверзити системи се користе да се истовремено смањи утицај брзог 

фединга и спорог фединга на перформансе система, односно на вероватноћу отказа 

система, вероватноћу грешке система, капацитет канала и на средње време трајања 

отказа система. Бежични мобилни макродиверзити систем чини један макродиверзити 

комбинер и два или више микродиверзити комбинера. Микродиверзити комбинери могу 

да имају два или више улаза [46]. Сигнали са излаза из микродиверзити комбинера се 

појављују на улазима у макродиверзити комбинер [73, 77]. Макродиверзити комбинер 

комбинује сигнале са антена које су постављене на базним станицама што резултира у 

смањењу утицаја спорог фединга на перформансе система, а микродиверзити комбинери 

комбинују сигнале са више антена на једној базној станици што резултира у смањењу 

утицаја брзог фединга на перформансе система. Користи се најчешће макродиверзити 

селективни комбинер (SC). SC комбинер издваја микродиверзити комбинер са највећом 

снагом корисног сигнала на његовим улазима, који треба да обезбеди сервис према 

кориснику. Микродиверзити комбинер може такође да буде селективан. 

Микродиверзити SC комбинер издваја грану са највећом анвелопом корисног сигнала, 

која треба да омогући сервис према кориснику [74, 75].  

Спори фединг узрокује промену снаге корисног сигнала на улазима у 

микродиверзити комбинере. Спори фединг може да буде описан лог-нормалном 

расподелом или са Гама расподелом. Када је спори фединг описан лог-нормалном 

расподелом онда се изрази за густину вероватноће и кумулативну вероватноћу сигнала 

на излазу из макродиверзити комбинера не могу добити у затвореном облику. Када је 

спори фединг описан Гама расподелом онда су изрази за перформансе система добијени 

у затвореном облику. У овом случају је анализа и прорачун система једноставнији. Према 

експерименталним резултатима, тачнији резултати се добијају када је спори фединг 

моделован са лог-нормалном расподелом. Спори фединг је увек корелисан због тога што 

је тешко постићи довољно растојање између базних станица да би корелациони 

коефицијенат био занемарљив. Често су две или више базних станица осенчане са истом 

препреком. Када корелациони коефицијент иде према јединици онда најмањи сигнал се 

догађа на свим микродиверзити пријемницима што знатно умањује диверзити добитак 

бежичног система [13, 73, 77]. Спори фединг настаје због ефекта сенке, а брзи фединг 

настаје због простирања сигнала по више путева. Брзи фединг се може описати са више 

расподела зависно од тога да ли постоји доминантна компонента или не, да ли је средина 

пропагације линеарна или не, да ли важи централна гранична теорема или не, да ли се 

сигнал простире у оквиру једног кластера или у оквиру више кластера, да ли је снага 

сигнала променљива или не, и да ли су снаге компонената у фази и компоненте у 

квадратури исте или не. У овој глави ће се разматрати фединг канали у којима је анвелопа 

сигнала описана са Рајсовом или к-µ расподелом [35]. Рајсовом расподелом се описују 

канали у којима може да се формира једна доминантна компонента у оквиру једног 

кластера, а к-µ расподелом могу да се опишу канали у којима могу да се формирају више 

доминантних компонената у оквиру више кластера. к-µ расподела представља општу 

расподелу, тако да се из ње могу извести Реjлијева, Рајсова и Накагами-m расподела, 

респективно. Тако, за к = 0, к-µ фединг канал постаје Накагами-m фединг канал. А за 

μ = 1, к-µ фединг канал постаје Рајсов фединг канал. Када је к = 0 и μ = 1, к-µ фединг 

канал прелази у Реjлијев фединг канал. А када к → ∞ , к-µ фединг канал прелази у канал 

без присуства фединга. Када Рајсов фактор к расте смањује се утицај к-μ фединга на 

перформансе система.  

У овој глави су прво израчунате густина вероватноће, кумулативна вероватноћа 

и средњи број осних пресека сигнала на улазу у SC комбинер, а затим и на његовом 
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излазу. Ове формуле су употребљене за израчунавање густине вероватноће, кумулативне 

вероватноће и вероватноће отказа сигнала за модел макродиверзити система са једним 

макродиверзити SC комбинером и два микродиверзити SC комбинера. 

 

5.1. Статистичке карактеристике к-μ случајне променљиве и к-μ случајног 

процеса 

 Густина вероватноће к-μ случајне променљиве садржи модификовану Беселову 

функцију. Када се модификована Беселова функција прве врсте развије у ред, добија се 

израз за густину вероватноће к-μ случајне променљиве. Кумулативна вероватноћа се 

добија интеграцијом густине вероватноће у одређеним границама. Добијени интеграл се 

решава применом непотпуне Гама функције. Када се непотпуна Гама функција развије у 

ред помоћу хипергеометриских функција онда се кумулативна вероватноћа добија у 

затвореном облику. Помоћу ових израза могу се разматрати перформансе бежичних 

система који раде у каналу у коме је присутан к-μ фединг. Вероватноћа отказа ових 

система може да се одреди применом кумулативне вероватноће к-μ случајне 

променљиве. Средњи број осних пресека к-μ случајног процеса може се добити у 

затвореном облику. Овај израз је добијен помоћу здружене густине вероватноће к-μ 

случајне променљиве и њеног првог извода [30, 58].  

Густина вероватноће к-μ случајне променљиве x је [30, 58]: 

        (5.1) 

где је к Рајсов фактор, μ је оштрина фединга и Ω је средња снага анвелопе 
2xΩ  .  

 

 

Слика 5.1. PDF к-μ случајне променљиве на улазу у SC комбинер, на основу једначине 

(5.1), за број кластера 2 , Рајсов фактор к = 5 и вредности средњих снага Ω = 0.5, 1, 

2, респективно. 

 

На Слици 5.1. дат је графички приказ добијених нумеричких резултата за PDF к-

μ случајне променљиве, на основу једначине (5.1), у зависности од анвелопе сигнала, за 
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број кластера 2 , Рајсов фактор к = 5 и вредности средњих снага Ω = 0.5, 1, 2, 

респективно (плава, наранџаста, зелена крива). 

Кумулативна вероватноћа од к-μ случајне променљиве x је [6, 34, 37]: 
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Применом формуле:  
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На слици 5.2. дат је графички приказ нумерички добијених резултата за CDF к-μ 

случајне променљиве на улазу у SC комбинер, на основу једначине (5.7), у зависности од 

анвелопе сигнала, за параметре дате на слици. 

 

 

Слика 5.2. CDF к-μ случајне променљиве на улазу у SC комбинер, на основу једначине 

(5.7), за параметре дате на слици. 

 

Први извод од к-μ случајне променљиве има Гаусову густину вероватноће, где су 

к-μ случајна променљива и њен први извод међусобно независни. Тада је њихова 

здружена густина вероватноће једнака производу густине вероватноће к-μ случајне 

променљиве и њеног првог извода : 
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где је интеграл I једнак: 

 

 

                                        (5.11)  
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Сређивањем израза: 

 , , ,  

добија сe израз за средњи број осних пресека: 
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5.2. Селективни комбинер (SC) у присуству к-µ фединга  

 На слици 5.3. је приказан SC комбинер који се користи ради смањења утицаја к-µ 

фединга на перформансе система [12, 22, 23, 37, 38]. Дати SC комбинер има два улаза и 

анвелопе сигнала на улазима у комбинер су означене са  и , а сигнал на излазу је 

означен са x. Параметри к-µ фединга су исти за оба улаза SC комбинера. При томе, сигнал 

на његовом излазу је једнак максималном сигналу са његових улаза. 

 

 

Слика 5.3. Селективни комбинер (SC). 

Сигнал x на излазу је једнак: 

                                        (5.17) 

Густина вероватноће сигнала на излазу из SC комбинера је једнака [37]: 
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Кумулативна вероватноћа сигнала на излазу из SC комбинера је: 
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На слици 5.4. дат је графички приказ нумерички добијених резултата PDF к-μ 

случајне променљиве на излазу из SC комбинера, на основу једначине (5.18), у 

зависности од анвелопе сигнала, за параметре дате на слици.  

 

 

 

Слика 5.4. PDF к-μ случајне променљиве на излазу из SC комбинера, на основу 

једначине (5.18), за параметре дате на слици. 
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Слика 5.5. CDF к-μ случајне променљиве на излазу из SC комбинера, на основу 

једначине (5.19), за параметре дате на слици. 

 

На слици 5.5. дат је графички приказ нумерички добијених резултата CDF к-μ 

случајне променљиве на излазу из SC комбинера, на основу једначине (5.19), у 

зависности од анвелопе сигнала, за параметре дате на слици. За цртање графика 

коришћен је програм Wolfram Mathematica 12.2. 

Здружена густина вероватноће од x и  је [34, 80]: 
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Средњи број осних пресека од x је: 
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5.3. Модел макродиверзити система са једним макродиверзити SC комбинером и 

два микродиверзити SC комбинера у присуству брзог к-µ фединга и спорог Гама 

фединга  

Макродиверзити систем, разматран у овом раду, приказан је на слици 5.6. Систем 
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Сигнали на улазима у први микродиверзити SC комбинер су означени са  и , а на 

улазима у други микродиверзити SC комбинер са  и . При томе, сигнали на њиховим 

излазима су означени са x и y, респективно. Сигнал на излазу из макродиверзити SC 

комбинера је означен са z. Снаге сигнала на улазима у микродиверзити SC комбинер су 

означене са Ω1 и Ω2. Комуникациони канал је изложен утицају Гама спорог фединга. 

Случајне променљиве Ω1 и Ω2 су описане корелисаном Гама расподелом.  

 

 

Слика 5.6. Макродиверзити систем. 

 

Здружена густина вероватноће од Ω1 и Ω2 је [38, 46, 63]: 
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где је с параметар оштрине Гама спорог фединга,  је корелациони коефицијент Гама 

спорог фединга, Ω0 је средња вредност од Ω1 и Ω2 . 

Макродиверзити SC комбинер издваја микродиверзити SC комбинер са већом 

снагом сигнала на улазима, који треба да обезбеди сервис према корисницима. Тада је 

кумулативна вероватноћа сигнала на његовом излазу једнака [46, 58, 74]: 
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Претходни интеграл се може решити применом формуле: 

                         (5.27) 

где је:  ,                                                            (5.28)                                  
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                        (5.29) 

      

                           (5.30) 

 

Кумулативна вероватноћа сигнала на излазу из макродиверзити SC комбинера, 

дата у једначини (5.32), израчуната је у отвореном облику. Наиме, и поред свих познатих 

интеграла, није било могуће добити израз у затвореном облику. На слици 5.7. дат је 

графички приказ нумеричких резултата кумулативне вероватноће сигнала на излазу из 

макродиверзити SC комбинера, на основу једначине (5.32), за заједничке параметре 

Ω0=к=µ=1. При томе, параметри ρ0 и c се мењају. За цртање графика коришћен је 

програм Wolfram Mathematica 12.2. 

 

Кумулативна вероватноћа (CDF) сигнала на излазу из макродиверзити SC 

комбинера је: 
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Аналитички израз за густину вероватноће (PDF) сигнала на излазу из 

макродиверзити SC комбинера је: 

 

   

                     (5.33)

 Једначина (5.33) добијена је диференцирањем једначине (5.32) у програму 

Wolfram Mathematica 12.2. 

 

 
Слика 5.7. Графички приказ нумеричких резултата кумулативне вероватноће сигнала на 

излазу из макродиверзити SC комбинера, на основу једначине (5.32), за заједничке 

параметре Ω0=к=µ=1. Параметри ρ0 и c се мењају. 

 

На слици 5.8. дат је графички приказ нумеричких резултата за густину 

вероватноће сигнала на излазу из макродиверзити SC комбинера, на основу једначине 

(5.33), за заједничке параметре Ω0=к=µ=1. При томе, параметри ρ0 и c се мењају . За 

цртање графика коришћен је програм Wolfram Mathematica 12.2. 

 

 




0

1dΩ 
























2

1

1111 )1(,1,
Ω

z
кiiF  

























2

1

2211 )1(,1,
Ω

z
кiiF 


 1242

1
321 ciii

Ω
  





2

0

1

1 Ω

Ω

e

 xpx
     212 ii

1422 21 


ii
x 


 2

2
1

)1(
x

Ω

к

e

  














 
 


21

2

1

21
ii

Ω

xк

       
























 














 












 














 
2

1

2

22

1

2

2

1

2

12

1

2 1
,0,

11
,0,

1
12

Ω

xк
iΓ

Ω

xк

Ω

xк
iΓ

Ω

xк
ii









Ω0= к= µ= 1  ρ0 = 0.5, c = 1.5 

1.50.5 

ρ0 = 0.5, c = 1.5 

1.50.5 

 ρ0 = 0.5, c = 1.5 

1.50.5 

 ρ0 = 0.5, c = 1.5 

1.50.5 

 ρ0 = 0.9, c = 1.5 

1.50.5 

 ρ0 = 0.1, c = 1.5 

1.50.5 

 

Ω0= 
 к=µ 

= 1  



 

84 

 

 

Слика 5.8. Графички приказ нумеричких резултата за густину вероватноће сигнала на 

излазу из макродиверзити SC пријемника, на основу једначине (5.33), за заједничке 

параметре Ω0=к=µ=1. Параметри ρ0 и c се мењају. 

 

Вероватноћа отказа (оutage probability) је дефинисана као вероватноћа да излазни 

однос сигнала и интерференције буде испод унапред дефинисаног нивоа прага xTH (оutage 

threshold xTH).  

Вероватноћа отказа је 22, 56:  

   TH

0

xxO

TH

xFdttpP

x

                                                                                                (5.34) 

 

 

 

Слика 5.9. Графички приказ нумерички добијених резултата за вероватноћу отказа у 

зависности од нивоа прага, на основу једначине (5.32), за различите вредности параметра 

ρ0. 

ρ0 = 0.5, c = 1.5 

1.50.5 

 ρ0 = 0.5, c = 1.5 

1.50.5 

 ρ0 = 0.5, c = 1.5 

1.50.5 

 ρ0 = 0.5, c = 1.5 

1.50.5 

 ρ0 = 0.9, c = 1.5 

1.50.5 

 

ρ0 = 0.1, c = 1.5 

1.50.5 

 

ρ0=0.75 

ρ0=0.5 

к= µ=Ω0=c= 1  

ρ0=0.9 

ρ0=0.01 
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На слици 5.9. дат је графички приказ нумерички добијених резултата за 

вероватноћу отказа у зависности од нивоа прага, на основу једначине (5.32), за к-μ 

случајну променљиву на излазу из SC комбинера 22, у зависности од анвелопе сигнала. 

Заједнички параметри су к=µ=Ω0=c=1. При томе, криве које су приказане на слици 5.9. 

су добијене за различите вредности параметра ρ0. За цртање графика коришћен је 

програм Wolfram Mathematica 12.2. 

На слици 5.10. дат је графички приказ нумерички добијених резултата за 

вероватноћу отказа у зависности од нивоа прага, на основу једначине (5.32), за к-μ 

случајну променљиву на излазу из SC комбинера, у зависности од анвелопе сигнала. 

Заједнички параметри су к=µ=c=1. При томе, ρ0=0.75 за плаву криву, а ρ0=0.5 за остале 

криве. Вредности параметра 0 дате су на слици за сваку криву. За цртање графика 

коришћен је програм Wolfram Mathematica 12.2. 

 

 

Слика 5.10. Графички приказ нумерички добијених резултата за вероватноћу отказа у 

зависности од нивоа прага, за различите вредности параметра 0. 

 

На основу свега, може се констатовати да су у овој глави одређене PDF и CDF к-

μ случајне променљиве на улазу у SC комбинер, при чему су дати и графички прикази 

нумерички добијених резултата за исте. Поред тога, аналитички је одређен и средњи број 

осних пресека. Такође, одређене су PDF и CDF за максимум две к-μ случајне променљиве 

 на излазу из SC комбинера и дати су графички прикази нумерички 

добијених резултата за исте. Аналитички је одређен и средњи број осних пресека. Затим 

су за модел макродиверзити система са једним макродиверзити SC комбинером и два 

микродиверзити SC комбинера у присуству брзог к-μ фединга и спорог Гама фединга 

аналитички одређени PDF и CDF, и при томе, графички приказани нумерички добијени 

резултати за различите параметре. Нумерички је одређена вероватноћа отказа у 

зависности од нивоа прага, за различите параметре. У свим овим резултатима је 

коришћен програм Wolfram Mathematica 12.2. 
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6. ПЕРФОРМАНСЕ БЕЖИЧНОГ МАКРОДИВЕРЗИТИ СИСТЕМА У 

ПРИСУСТВУ БРЗОГ к-μ ФЕДИНГА, СПОРОГ ГАМА ФЕДИНГА И к-μ 

МЕЂУКАНАЛНЕ ИНТЕРФЕРЕНЦИЈЕ 

У овој глави дате су перформансе бежичног макродиверзити система у коме су 

присутни брзи к-μ фединг, спори Гама фединг и к-μ међуканална интерференција. 

Примењени су микродиверзити комбинери који су селективни [12]. Макродиверзити 

селективни комбинер издваја микродиверзити селективни комбинер (SC комбинер), са 

већом снагом на улазима, тако да омогући сервис према кориснику и на тај начин смањи 

утицај спорог фединга на перформансе система. При томе, микродиверзити SC комбинер 

издваја грану са највећим односом снага сигнал/интерференција. Макродиверзити 

системи се формирају у оквиру ћелије код ћелијских конфигурација које се користе да се 

повећа капацитет канала. Са повећањем броја ћелија повећава се капацитет система јер 

се иста носећа фреквенција може користити у појединим ћелијама. Број ћелија у неком 

географском простору је ограничен због појаве међуканалне интерференције. Због овога 

је међуканална интерференција увек присутна код ћелијске конфигурације мобилних 

бежичних система. Код ових система је међуканална интерференција доминантна 

сметња у односу на Гаусов шум, па се зато и називају интерференцијом ограничени 

системи. Код ових система, утицај Гаусовог шума на вероватноћу грешке система, 

вероватноћу отказа система, капацитет канала и средње време трајања отказа система 

може се занемарити. Такође, однос снага анвелопа корисног сигнала и интерференције 

је важна статистичка карактеристика помоћу које се могу израчунати вероватноћа 

грешке, вероватноћа отказа, капацитет система и средње вредности. Микродиверзити 

пријемници комбинују сигнале са више антена које су постављене на базним станицама, 

а макродиверзити SC пријемник комбинује сигнал са базних станица које су географски 

постављене по ћелијама. Код ћелијских система, на базним станицама је присутан и брзи 

и спори фединг, па је међуканална интерференција, такође, изложена брзом и спором 

федингу [74, 76]. 

На улазима у микродиверзити SC пријемник је присутан брзи к-μ фединг. 

Микродиверзити SC пријемници имају по два улаза и растојање између њих је довољно 

велико тако да анвелопе к-μ фединга нису корелисане на антенама. Корисни сигнал и 

међуканална интерференција су изложени брзом к-μ федингу са различитим к факторима 

и различитим средњим снагама анвелопа. Параметар μ је исти за оба к-μ фединга јер може 

да се претпостави да је број кластера исти за канал кроз који се простире корисни сигнал 

и за канал кроз који се простире међуканална интерференција [71]. Такође, корисни 

сигнал и међуканална интерференција су изложени спором федингу. Спори фединг 

утиче на варијацију средње снаге. Варијација средње снаге због утицаја спорог фединга 

може да се опише са Гама расподелом или са лог-нормалном расподелом [7]. У овом 

случају, варијација средње снаге због утицаја спорог фединга је описана са Гама 

расподелом. Када је спори фединг описан са лог-нормалном расподелом онда изрази за 

перформансе система не могу бити изведене у затвореном облику што знатно отежава 

анализу бежичних телекомуникационих мобилних радио система.  

Спори фединг настаје због ефекта сенке. Две или више базних станица могу често 

да буду захваћене са истом сенком и због тога су средње снаге анвелопа сигнала на 

базним станицама корелисане, односно спори фединг има велику корелациону дистанцу.  

 Прво су израчунате густина вероватноће и кумулативна вероватноћа односа 

сигнала и интерференције на улазу и излазу микродиверзити SC комбинерa (SC 

микрокомбинера). Затим је израчуната вероватноћа отказа на излазу из микродиверзити 

SC комбинерa. Ови резултати су употребљени за израчунавање густине вероватноће и 

кумулативне вероватноће односа сигнал/интерференција (SIR) [12] на излазу из 

макродиверзити SC комбинерa. При томе, дати су графички прикази вероватноће отказа 
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у зависности од прага, која је израчуната коришћењем програма Wolfram Mathematica 

12.2, за неколико вредности више различитих параметара на излазу из макродиверзити 

SC комбинера [2, 12, 34]. Поред тога, дат је и добитак макрокомбиновања у децибелима 

у зависности од коефицијента корелације ρ на излазу из макродиверзити SC комбинера. 

 

6.1. Густина вероватноће и кумулативна вероватноћа односа 

сигнал/интерференција на улазима и излазу из ЅС комбинера  

 На слици 6.1. приказан је ЅС комбинер са два улаза [12, 80], који се разматра. 

Анвелопе корисног сигнала на улазима у ЅС пријемник су означене са  и , а на 

излазу из ЅС пријемника са . Анвелопе међуканалне интерференције на улазима у ЅС 

пријемник су означене са  и , а на излазу из ЅС пријемника са . Средња снага 

анвелопе корисног сигнала је означена са Ω1, а средња снага међуканалне 

интерференције је означена са .  

 

 
Слика 6.1. Селективни комбинер у присуству корисног сигнала и међуканалне 

интерференције. 

 

Однос анвелопа корисног сигнала и међуканалне интерференције на првом улазу 

ЅС комбинерa је:  

 ,                                                               (6.1) 

а на другом улазу ЅС комбинерa је:  

 ,                                                               (6.2) 

Густина вероватноће )( 111
p  је израчуната применом једначине (3.30) из главе 
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Кумулативна вероватноћа од  израчуната је применом једначине (3.46) из главе 

3 и са једначином (6.3) коришћена за израчунавање густина вероватноће од SIR-а, а затим 

дата у једначини (6.4). 

Однос анвелопа корисног сигнала и међуканалне интерференције на излазу из ЅС 

комбинера је .  

Густина вероватноће )( 11
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                             (6.4) 

На слици 6.2. дат је графички приказ нумеричких резултата за PDF  односа 

сигнала и интерференције (SIR) на излазу из ЅС комбинера, на основу једначине (6.4), 

где су заједнички параметри ɳ1=к1=µ1=S1=к2=µ2=1, док је Ω1=1, Ω1=2 и Ω1=3 за плаву, 

наранџасту и зелену криву, респективно. 

 

 

Слика 6.2. Графички приказ нумеричких резултата за PDF  односа сигнала и 

интерференције на излазу из ЅС комбинера, на основу једначине (6.4), где су заједнички 

параметари ɳ1 = к1 = µ1 = S1 = к2 = µ2 = 1, док је Ω1 = 1, Ω1 = 2 и Ω1 = 3 за плаву, наранџасту 

и зелену криву, респективно. 

 

Кумулативна вероватноћа од  је [63]: 
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                          (6.5) 

На слици 6.3. дат је графички приказ нумеричких резултата за CDF  односа 

сигнала и интерференције на излазу из ЅС комбинера, на основу једначине (6.5), где су 

заједнички параметри ɳ1 = к1 = µ1 = S1 = к2 = µ2 = 1, док је Ω1 = 1, Ω1 = 2 и Ω1 = 3 за плаву, 

наранџасту и зелену криву, респективно. 

 

 

 
Слика 6.3. Графички приказ нумеричких резултата за CDF  односа 

сигнал/интерференција на излазу из ЅС комбинера, на основу једначине (6.5), где су 

заједнички параметри ɳ1 = к1 = µ1 = S1 = к2 = µ2 = 1, док је Ω1 = 1, Ω1 = 2 и Ω1 = 3 за плаву, 

наранџасту и зелену криву, респективно. 

 

Вероватноћа отказа (outage probability) је 22, 56:  

   TH
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xxO

TH

xFdttpP

x

                                                (6.6) 

Вероватноћа отказа (Po) на излазу из ЅС микрокомбинера израчуната је 

нумерички, на основу једначине (6.5), у програму Wolfram Mathematica 12.2, a затим је 

на слици (6.4.) дат графички приказ нумеричких резултата за Po. Заједнички параметри 

су ɳ1=к1=µ1=S1=к2=µ2=1. Једна крива дата је за Ω1 = 1, где Po тежи вредности 1, а друга 

за Ω1 = 2, где Po тежи вредности 0.8, као што је приказано на наведеној слици. Помоћу 

хоризонталне црне линије која пресеца оба графика за Po, одређујемо ниво прага xTH 

(threshold) за Ω1 = 1 и за Ω1 = 2, респективно. Ниво прага je приближно  6 dB (означен 

са две вертикалне црне линије на графику) и одређен је за вероватноћу отказа Po = 0.001.  
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Слика 6.4. Графички приказ нумеричких резултата вероватноће отказа на излазу из ЅС 

микрокомбинера, на основу једначине (6.5), где је параметар Ω1 = 1 и Ω1 = 2, респективно, 

док су заједнички параметри ɳ1 = Ω2 = к1 = µ1 = S1 = к2 = µ2 = 1.  

 

6.2. Густина вероватноће сигнала на излазу из макродиверзити ЅС комбинера  

Макродиверзити систем који се разматра у овој глави има један макродиверзити 

ЅС комбинер и два микродиверзити ЅС комбинера [12]. Модел разматраног 

макродиверзити система приказан је на слици 6.5. [46]. 

 

 
 

 

Слика 6.5. Макродиверзити систем. 

 

 Анвелопе корисног сигнала на улазима у први микродиверзити ЅС комбинер су 

означене са  и , а на улазима у други ЅС комбинер са  и . Анвелопе корисног 

сигнала на излазима из микродиверзити ЅС комбинера означене су са  и , а на излазу 

из макродиверзити ЅС комбинера са x. Анвелопе међуканалне интерференције на 

улазима у први микродиверзити ЅС комбинер су означене са  и , а на улазима у 

други ЅС комбинер са  и . Анвелопе међуканалне интерференције на излазима из 
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микродиверзити ЅС комбинера су означене са  и , а на излазу из макродиверзити ЅС 

комбинерa са . Однос анвелопа корисног сигнала и интерференције (SIR) [12] на 

улазима у први микродиверзити ЅС комбинер су означени са  и , а на улазима у 

други микродиверзити ЅС комбинер са  и . Однос анвелопа корисног сигнала и 

интерференције на излазима из микродиверзити ЅС комбинера је означен са  и , а 

на излазу из макродиверзити ЅС комбинерa са . Средња снага корисног сигнала на 

улазима у први микродиверзити ЅС комбинер је означена са Ω1, а на улазима у други ЅС 

комбинер са Ω2. Средња снага међуканалне интерференције на улазима у први 

микродиверзити ЅС комбинер је означена са , а на улазима у други микродиверзити 

ЅС комбинер са . 

 Здружена густина вероватноће средњих снага анвелопа на улазима у базне 

станице Ω1 и Ω2 има корелисану Гама расподелу [38, 46, 63]: 

 

,                 (6.7) 

Ω1 ≥ 0, Ω2 ≥0,                                                                                   

 Густина вероватноће средње снаге анвелопе међуканалне интерференције је 

некорелисана Гама расподела [44, 46, 63, 80 ]: 

   , ,                         (6.8) 

 У претходним изразима су  и  оштрине фединга, Ω0 је средња вредност од Ω1 

и Ω2, а  је средња снага од  и . 

Макродиверзити ЅС пријемник издваја микродиверзити са већом средњом 

снагом. На основу овога је густина вероватноће сигнала на излазу из макродиверзити ЅС 

пријемника једнака [58]: 

 

                   (6.9) 

 

Због потешкоћа са израчунавањем једначине (6.9) у затвореном облику која 

садржи четвороструки интеграл, у програму Wolfram Mathematica 12.2 најпре је 

извршено сумирање тако што се из целе једначине извуче један члан суме, у овом случају 

I1, и израчуна сума по i1.  
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I1=                 (6.10) 

Када се у програму Wolfram Mathematica 12.2 изврши ово сумирање по i1 , где i1 

иде од 0 до ∞, добија се следећа једначина: 

P1 = e-y                                                                                                 (6.11) 

Затим се врши интеграљење по S1. Тај интеграл постоји у затвореном облику. 

Добија се следећа једначина: 

P2 =  (6.12) 

Задњи члан суме који је потребан да би се израчунала коначна формула за PDF на 

излазу из макродиверзитија је: 

P3 =                   (6.13) 

Тиме је једначина (6.9) која садржи четвороструки интеграл поједностављена и 

израчуната у програму Wolfram Mathematica 12.2 и тако добијена једначина (6.14): 

pɳ(ɳ) =  e-y  

 

                                                                                                                    (6.14) 

 На слици 6.6. дат је графички приказ нумеричких резултата густине вероватноће 

односа анвелопа корисног сигнала и интерференције, који је добијен интерполацијом, 

где су вредности за x у опсегу (0.0001, 15) узете са кораком 0.1. Вредности за PDF 

прорачунате су и изведене у програму Wolfram Mathematica 12.2, на основу једначине 

(6.8), за параметре дате на слици. 

Кумулативна вероватноћа односа анвелопа корисног сигнала и међуканалне 

интерференције на излазу из макродиверзити ЅС пријемника је [80]: 
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Слика 6.6. Графички приказ нумеричких резултата густине вероватноће односа 

анвелопа корисног сигнала и интерференције, који је добијен интерполацијом, где су 

вредности за x у опсегу (0.0001,15) узете са кораком 0.1. Вредности за PDF прорачунате 

су и изведене у програму Wolfram Mathematica 12.2, на основу једначине (6.8), за 

параметре дате на слици. 

 

 

 
Слика 6.7. Графички приказ нумеричких резултата кумулативне вероватноће односа 

анвелопа корисног сигнала и међуканалне интерференције Fɳ(ɳ) на излазу из 

макродиверзити ЅС пријемника, на основу једначине (6.15). 
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Интеграцијом једначине (6.15) у програму Wolfram Mathematica 12.2 добијају се 

нумерички резултати кумулативне вероватноће односа анвелопа корисног сигнала и 

међуканалне интерференције на излазу из макродиверзити ЅС комбинера, за параметре 

Ω1 = Ω2 = к1 = µ1 = к2 = µ2 = c1 = c2 = β1 = β2 = 1, чији је графички приказ дат на слици 6.7.  
На основу једначине (6.15), коришћењем програма Wolfram Mathematica 12.2, дат 

је низ графика вероватноће отказа Po у зависности од нивоа прага xTH на излазу из 

макродиверзити SC комбинера (видети слике 6.8.-6.11.), за различите вредности 

параметара. 

 

 

 
 

Слика 6.8. Вероватноћа отказа PO у зависности од нивоа прага xTH на излазу из 

макродиверзити SC комбинера, за параметре дате на слици. 
 

 

 

 
Слика 6.9. Вероватноћа отказа PO у зависности од нивоа прага xTH на излазу из 

макродиверзити SC комбинера, за параметре дате на слици. 
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Слика 6.10. Вероватноћа отказа PO у зависности од нивоа прага xTH на излазу из 

макродиверзити SC комбинера, за различите вредности параметара Ω0 и 0.
 

 

 

 

 
  

Слика 6.11. Вероватноћа отказа PO у зависности од нивоа прага xTH на излазу из 

макродиверзити SC комбинера, са параметрима датим на слици, као и за различите 

вредности параметра ρ0. 

 

На слици 6.10. приказана је вероватноћа отказа PO у функцији од нивоа прага xTH 

(праг отказа), за различите вредности параметара Ω0 и ρ0. Може се приметити да је 

вероватноћа нижа за ниже вредности корелационог коефицијента ρ0 и/или за више 
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вредности параметра снаге Ω0. Што је корелациони коефицијент нижи, то је и сама 

корелација између излаза микродиверзитија нижа, а затим и перформансе система боље. 

Уколико фиксирамо параметар Ω0 = 10 dB, уочава се смањење вероватноће отказа са 

смањењем корелације (ρ0 = 0.999, 0.9, 0.5, 0.1, респективно). Такође, можемо уочити да 

је најнижа вредност вероватноће отказа добијена за највеће Ω0 = 25 dB и ρ0 = 0.9 (црвена 

крива), што указује на већи утицај параметра који описује снагу односа сигнал-шум на 

вероватноћу отказа. 

На слици 6.11. дата је вероватноћа отказа PO у зависности од нивоа прага xTH, за 

параметре к1 = µ1 = к2 = µ2 = 1, c = 1.1, c1 = c2 = 1.1, β1 = 1, Ω0 = 10, као и за различите 

вредности параметра ρ0. Ниво прага je одређен са графика за Po = 0.001 (означен са две 

вертикалне црне линије на графику) и износи приближно  10 dB, добијен на исти начин 

као и у случају слике 6.4., где је на излазу SC комбинера ниво прага био  6 dB. На тај 

начин, може се констатовати знатно побољшање применом ове технике.  

Применом макродиверзити система (видети слику 6.5.), смањује се вероватноћа 

отказа без повећања ширине фреквентног опсега и повећања снаге на предаји, што је још 

један допринос ове дисертације. 

 

 

 
 

Слика 6.12. Добитак макро комбиновања у децибелима у зависности од коефицијента 

корелације ρ на излазу из макродиверзити SC комбинера. 

 

Када се посматра слика 6.12, где је дат добитак макро комбиновања у децибелима 

у зависности од коефицијента корелације ρ на излазу из макродиверзити SC комбинера, 

може се закључити да је за коефицијент корелације ρ = 1 добитак макрокомбиновања 

0 dB. При томе, како се смањује коефицијент корелације ρ добитак макрокомбиновања 

расте. Тако, добитак макрокомбиновања за ρ = 0, тј. када нема корелације је 9.25 dB. Тиме 

је показано да се применом предложеног макродиверзити система (видети слику 6.5.), са 

смањењем корелационог коефицијента Гама спорог фединга ρ, а без повећања ширине 

фреквентног опсега и без повећања снаге на предаји, повећава добитак макро 

комбиновања. 
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(0.75,7.25) 
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  (1,0) 
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На основу свега, може се констатовати да је у овој глави разматран 

макродиверзити систем у присуству к-μ брзог фединга, Гама спорог фединга и к-μ 

међуканалне интерференције, где су прво аналитички одређени PDF и CDF на излазу из 

SC комбинера, а затим и PDF и CDF на излазу разматраног макродиверзити система. 

Затим су дати графички прикази за све прорачунате формуле PDF-a и CDF-a, као и 

графички прикази за вероватноћу отказа на излазу из SC комбинера и макродиверзити 

SC комбинера, у зависности од нивоа прага, као и добитак макро комбиновања у dB, у 

зависности од коефицијента ρ, применом програма Wolfram Mathematica 12.2. 

Упоређивањем нивоа прага, за исту вредност вероватноће отказа од 0.001, на излазу 

микродиверзити SC комбинера (добијена вредност од – 6 dB) и на излазу макродиверзити 

SC комбинера (добијена вредност од – 10 dB), констатовано је знатно побољшање 

применом макродиверзити технике, што је један од значајнијих доприноса дисертације. 

Поред тога, применом разматраног макродиверзити система смањује се вероватноћа 

отказа без повећања ширине фреквентног опсега и повећања снаге на предаји. Такође, 

применом разматраног макродиверзити система показано је да се смањењем 

корелационог коефицијента Гама спорог фединга ρ, без повећања ширине фреквентног 

опсега и повећања снаге на предаји, повећава добитак макро комбиновања.  
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7. ЕКСПЕРИМЕНТАЛНО МЕРЕЊЕ И SIR СТАТИСТИЧКА АНАЛИЗА 

ПРИЈЕМА БЕЖИЧНОГ ДИВЕРЗИТЕТА У κ-μ ФEДИНГ КАНАЛУ 

У овој глави је приказано експериментално мерење односа 

сигнал/интерференција (SIR  ̶ signal to interference ratio), статистичка анализа пријема у 

макродиверзити систему (приказаном у глави 6, где је извршена математичка анализа). 

Наиме, на том макродиверзити систему извршена је SIR статистичка анализа, као и 

експериментално мерење.  

Мерења су извршена у лабораторији 304, Електронског факултета у Нишу, у 

познатом унутрашњем простору, тј. окружењу (indoor). Нивои шума пријемника који су 

коришћени дати су у приручнику произвођача пријемника. На сликама су нивои шума 

придружени прикупљеним подацима, тако да се може видети да су нивои шума значајно 

нижи од нивоа сигнала. У лабораторијски контролисаним условима у indoor окружењу, 

уређаји су позиционирани у малом простору и растојање између њих је очекивано мало. 

Зато је очекивано да пријемни сигнал буде релативно висок у поређењу са нивоом шума. 

У таквим условима, главни детерминишући фактор комуникације је интерференција за 

уређаје у близини. 

У овој глави приказана је и детаљна анализа односа сигнал-интерференција (SIR) на 

основу прикупљених вредности примљене снаге сигнала (RSSI  ̶  recived signal strength 

indicator), у лабораторијски контролисаним условима. Мерење је спроводено под 

претпоставком реалног сценарија бежичне комуникације. Наиме, модел система се 

састоји од мобилних предајних чворова који раде на 2.336 GHz, две базне станице (Base 

Station  ̶  BS) које су опремљене SC пријемницима са селективним комбинером (selection 

combining  ̶  SC) са две гране, као и додатног SC пријемника, који комбинује излазе две 

BS на основу већег SIR. Добијени подаци показују добро слагање са к-μ расподелом када 

је κ = 1.837 и μ = 1.057. Подаци су даље обрађени како би се анализирале перформансе 

система са/без диверзити пријемом. Добијени експериментални резултати поткрепљују 

оне теоријске резултате који су дати и за модел система. Поред тога, под претпоставком 

да су канали симетрични, резултати могу бити корисни за downlink пренос (downlink 

transmission  ̶  пренос од базне станице до корисника) у смислу смањења снаге преноса и 

на тај начин смањења ефекта интерференције на друге уређаје. 

Бежичне комуникације и Интернет, су веома присутне последњих деценија, па су 

самим тим и тема многих дискусија у различитим областима истраживања. 

Карактеристике бежичног преносног сигнала зависе од окружења, климе, фреквенције 

носиоца, кретања пријемника, спектра сигнала итд. У том смислу, оптимална практична 

реализација бежичних комуникационих система захтева тачан статистички опис канала 

пропагације. Вишепутна пропагација, уведена због конструктивних и деструктивних 

комбинација насумично закашњених, рефлектованих, расутих и преломњених копија 

сигнала, доводе до присуства фединга. На пријему се промене примљеног сигнала 

карактеришу одређеном функцијом густине вероватноће (PDF) [59, 64]. 

У литератури присуство вишепутног фединга [102] у хомогеном окружењу је 

често моделовано помоћу Рејлијеве, Рајсове, Вејбулове или Накагами-m расподеле [59]. 

Такође, стварни подаци мерења представљени у [103] су показали да се реализација 

дубоког фединга услед пропагационог слабљења на кратким растојањима може 

моделовати логнормалном расподелом. Штавише, карактеристике нехомогене 

пропагације може се моделовати α-μ, ɳ-μ и κ-μ расподелама. Међу њима, предност 

општег модела к-μ фединга [95, 96, 97] је да може да опише многе од најчешће 

коришћених фединг модела, уз претпоставку да постоји линија видљивости (LOS  ̶  line 

of sight) или без линије видљивости (NLOS  ̶  non line of sight), на основу процене κ и μ. 

Техника диверзити пријема је ефикасна техника у смањивању ефекта фединга, 

што може побољшати поузданости преноса [64]. Такође, диверзити метода се показала 
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као ефикасна у опсегу радио фреквенција [62]. Међу често коришћеним шемама 

просторног диверзитија, селективни комбинер (SC) и SSC комбинер (Switch and Stay 

Combining), тј. „пребаци и остани“ комбинер, су мање сложени, за разлику од 

комбиновања максималног односа (MRC  ̶  maximal ratio combining) и комбиновања са 

једнаким појачањем (EGC  ̶  equal-gain combining) које захтевају количину информација 

о стању канала (CSI  ̶  channel state information). 

Циљ овог истраживања је прецизно окарактерисати стварни indoor пропагациони 

канал у присуству интерференције, за уређаје мале снаге, са SC диверзити шемом са два 

нивоа комбиновања на пријемној страни.  

 

7.1. Модел система 

Модел система који се разматра је приказан на слици 7.1. Уређај D1 је у стању да 

се креће у односу на стационарне BS, а постоји и мобилни уређај за интерференцију D2 

који ради у истом фреквентном опсегу и тако ствара међуканалну интерференцију 

(CCI  ̶  co-channel interference). Уређај D2 може бити истог типа и у том случају 

интерференција може бити резултат колизије преноса. Други сценарио, где 

интерференција може бити значајна, јесте случај неисправног уређаја који врши 

ненамерне преносе, било да су континуирани или повремени. Интерференција такође 

може бити сигнал ван опсега који долази са уређаја различитог типа. 

 

 

 
 

Слика 7.1. Модел система. 

 

Сматра се да је излазна снага легитимног уређаја релативно ниска и да осигурава 

пријем преноса са таквих уређаја мале снаге. Пријемна мрежа је изграђена од више 

пријемних станица. У овом случају разматран је систем који се састоји од две BS, али 

приступ није ограничен у смислу броја базних станица. Модел система су две базне 

станице опремљене SC пријемницима са двоструком граном. Сваки SC је пратио нивое 
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сигнала и интерференције на обе антене одређене базне станице и ефективно бирао једну 

од антена која има већи SIR. SIR из обе базне станице се даље обрађују на вишем 

хијерархијском нивоу са секундарним SC комбинером. 

Модел претпоставља да су и сигнал и интерференција изнад нивоа шума сваког 

појединачног пријемника. При томе, случајеви у којима постоје један или више сигнала 

који су испод нивоа шума пријемника, су подскупови општег проблема и не разматрају 

се даље. 

Да би се правилно одредиле карактеристичне мере перформанси система, кључно 

је окарактерисати ефекте вишепутног фединга. 

 

7.2. Теоријска анализа 

Изворни уређај шаље поруку емитујући сигнал 𝑠𝑥(𝑡), где је    1
2
tsE x , 

математички презентовано као tftsP x 0T 2cos)(
X

 , где је 
0f  носећа фреквенција, и 

XTP  

је снага преноса. На страни пријемника, сигнал који је примљен од једне од антена базне 

станице је: 

)()()(
XT tntshPtx xxx                       (7.1) 

где 𝛼𝑥 представља губитак путање између извора и одредишта, ℎ𝑥 је коефицијент 

фединга канала пропагације, тј. канала између предајника и оба пријемника, а n(t) је 

адитивни бели Гаусов шум (AWGN – additive white Gaussian noise). Сви симболи и ознаке 

променљивих које се користе у изразима наведени су у Табели 7.1, како би били 

читљивији. 

Анвелопa примљеног сигнала )()( txtr   директно зависи од ефеката 

пропагације. 

У случају присутности интерференције је: 

)()()( Tx tntshPty yyy                      (7.2) 

где су одговарајуће величине индексиране са y. 

 

Компонента губитка путање је одговорна за одређене губитке: 

    







 d

f

c
PP 10

0

10TR log10
4

log102
dBdB  X X


                (7.3) 

где  
dB XRP  означава снагу пријема,  

dB XTP  означава снагу емитовања предајника и d је 

растојање између предајне и пријемне антене. Под условом да извор интерференције 

шаље исту снагу као и жељени предајни уређај, пропагационо слабљење је фактор од 

значаја за одређивање просечног односа сигнал/интерференција. Међутим, у анализи 

која следи, не разматра се детаљније тачно пропагационо слабљење, већ се проучавају 

његови ефекти у смислу резултујућих просечних односа сигнал/интерференција. 

  



 

102 

 

 

Табела 7.1. Ознаке и симболи.   

Ознаке и симболи  

Ознаке/Симболи Дефиниција/Објашњење 

PTx, PRx Емитована, примљена снага 

x(t), y(t) Примљени корисни сигнал, интерференција 

X, Y Случајна статистичка променљива корисног сигнала, интерференција 

αx, αy Губици путање за сигнал, интерференцију 

hx, hy Фединг коефицијент корисног, и интерференцијског канала 

n(t) Адитивни бели Гаусов шум (AWGN) 

d Растојање између предајника и пријемника 

c Брзина светлости у вакуму 

f0 Носећа фреквенција 

κΩ, μΩ, κs, μs Фединг фактори обликовања за корисни сигнал, интерференцију 

b Индекс који означава редни број базне станице, b = 1, 2 

ℓ Индекс који означава редни број антене на одређеној базној станици,  

ℓ = 1, 2 

ℛ Случајна променљива која одговара анвелопи сигнала 

pℛ(r) PDF анвелопе сигнала 

Z Статистичка случајна променљива односа сигнал/интерференција 

(SIR) 

pZ(z) PDF односа сигнал/интерференција 

FZ(z) Кумулативна функција расподеле SIR-а 

Ω, S Математичко очекивање анвелопе корисног сигнала, интерференције 

R Снага примљеног сигнала, једначина (7.17) 

r Амплитуда примљеног сигнала, једначина (7.18) 

r̂i Нормализована анвелопа, i-ти узорак 

Pout Вероватноћа прекида 

zth Праг прекида 

1F1(a; b; c) Кумерова конфлуентна хипергеометријска функција 

2F1(a; b; c) Гаусова хипергеометријска функција 

H(r) Број реализација случајне променљиве, који спадају у одговарајући 

подопсег хистограма, од променљиве r 

 

 

7.3. Статистички модел вишепутног фединга 

Коришћен је модел κ-μ фединга у уклапању са стварним мерним подацима, 

сходно чињеници да је то општи модел који одговара NLOS/LOS окружењима. κ-μ 

расподела је дефинисана следећoм PDF анвелопом [96, 97]: 
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,              (7.4) 

где је Ω = E(ℛ ) математичко очекивање анвелопе статистичке случајне променљиве ℛ, 

док су к и µ фединг фактори обликовања. Примљенe анвелопе жељеног сигнала и 

интерференције се могу представити као две независне κ-μ случајне променљиве X и Y 
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(под условом да се извор интерференције не налази веома близу уређаја од интереса, у 

оквиру таласне дужине фреквенције носиоца), респективно. 

Када се разматрају SIR карактеристике, PDF количник две κ-μ променљиве 

YXZ /  може се наћи као: 





0

YXZ )()()( dyypyzypzp , 0z                   (7.5) 

Користећи једначину (7.4) и позивајући се на [56], интеграл се може решити као 

[98]: 
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где је 
2

2

1

1

S

ΩSS









  . Параметри 𝜅𝛺 и 𝜇𝛺 одговарају случајној променљивој X, док 𝜅𝑆 и 

𝜇𝑆 одговарају Y. Такође, средња снага жељеног сигнала се означава као Ω, док је средња 

снага интерференције S. 

 

7.4. SC комбиновање  

Селективни комбинери, који се сматрају саставним деловима базних станица BS1 

и BS2, приказани су на слици 7.1. Свака базна станица има две пријемне антене (ANT11 и 

ANT12 на BS1 и ANT21 и ANT22 на BS2). SC пријемници бирају виши SIR улазни ниво. 

Корисне анвелопе сигнала на улазима SCb су 1bx и 2bx , где се индекс b = 1, 2 односи на 

број базне станице. Анвелопа интерференције на одговарајућим улазима означена је као 

1by  и 2by . 

Претпостављено је да су средње снаге једнаке на обе антене на свакој базној 

станици, што одговара претпоставци да су пријемне антене релативно близу једна другој, 

али не тако близу да буду корелисане; па се губици на путу између мобилног уређаја и 

сваке од антена базне станице занемарљиво разликују. С друге стране, средње снаге на 

две базне станице могу бити различите, на основу индивидуалне удаљености циљног 

уређаја и извора интерференције у односу на базне станице. 

 

Однос корисног сигнала и анвелопе интерференције је: 

1

1

1

b

b

b
Y

X
Z   ,                     (7.7) 

где Z, X и Y представљају случајне променљиве одговарајућих расподела. 

Претпостављамо да су случајне променљиве X и Y са κ-μ расподелом, па је према томе 

PDF од Z дат са (7.6). Коришћењем [[87], једначина (07.20.06.0002.01)], 

поједностављујемо PDF израз на: 
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где 1F1(a; b; c) представља Кумерову конфлуентну хипергеометријску функцију. Након 

примарног SC комбиновања, PDF од 𝑍𝑏 = max{𝑍𝑏1; 𝑍𝑏2} је: 

)()()()()(
1221

Z xFxpxFxpxp
bbbbb ZZZZ                   (7.9) 

где се CDF од 𝑍𝑏ℓ добија интеграцијом (7.6), у следећем облику [98]: 
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Ако су 𝑍𝑏ℓ, ℓ = 1,  2 случајне променљиве које су независне и са идентичном 

расподелом (i.i.d. – independent and identically distributed), онда је: 

)()(2)( xFxpxp
bbb ZZZ 

                  (7.11) 

Уз претходну претпоставку, интеграцијом (7.11) изражени су CDF-ови односа 

сигнал/интерференција на излазима селективних комбинера као: 

)()( 2

z xFxF
bbZ 

                   (7.12) 

Према (7.10) и (7.12), вероватноћа отказа дефинисана као вероватноћа да 

тренутни однос сигнал/интерференција, падне испод претходно датог прага zth, може се 

проценити као )()(out thZth zFzP
bb 

 и )()(out thZth zFzP
bb

 , респективно. 

 

7.5. Комбиновање секундарног нивоа 

Када се разматра комбиновање секундарног нивоа, важно је бити свестан 

положаја циљног уређаја и извора интерференције у односу на BS. На пример, ако је 

циљни уређај ближи једној од базних станица, док је извор интерференције ближи другој 

базној станици, онда је лако замислити да би базна станица ближа циљном уређају била 

изабрана скоро увек. У том смислу, међу BS би се подједнако избалансирали најгори 

могући услови, а избор пребацивања на секундарном нивоу био би чешћи. Зато се услови 

i.i.d. могу сматрати најгорим случајем у смислу перформанси. С друге стране, очекује се 

да ће селективно комбиновање бити најефикасније у овим условима. 

Дакле, CDF на излазу система је у случају случајних променљивих, које су 

независне и са идентичном расподелом, изражен као: 

)()( 2

zZ zFzF
b

                   (7.13) 

док је PDF деривација ове функције, dFZ(x)/dx: 

)()(2)(
ZZZ

zFzpzp
bb

                  (7.14) 

или у смислу примарних SIR функција (7.8) и (7.10): 
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)()(4)( 3

Z
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zFzpzp
bb 

                  (7.15) 

Коначно, перформансе отказа целокупног система могу се израчунати, позивајући 

се на (7.13), као: 

)()( th
Z

thout zFzP                    (7.16) 

где је thz  унапред дефинисани праг отказа. 

 

7.6. Експериментална поставка, поступак мерења, мерно окружење и обрада 

података  

Експериментална поставка [8, 15] се састоји од SmartRF04EB Evaluation Board, 

коју производи Texsas Instruments, а која је заснована на CC2500 чипу примопредајника. 

Предајник је означен као уређај D1 на слици 7.1. Предајник је монтиран на 

алуминијумску шину која је водич по ком предајник може да се креће напред и назад, 

као што је приказано на слици 7.2 а). Механичка поставка омогућава резолуцију кретања 

од 1 mm, док је дужина шине 2 m. Ово заузврат омогућава скенирање 2 000 дискретних 

позиција предајника у једном обиласку колица која носе предајник. Пријемници 

засновани на истом CC2500 чипу су подешени да представљају базне станице, као што 

је приказано на Слици 7.2 б). Базне станице користе RF2500Т плоче од којих свака 

садржи микропроцесор, CC2500 примопредајни чип и керамичку антену (слика 7.3.). 

Сваки пријемник је повезан са предњим крајем (USB front-end) који омогућава 

комуникацију између главног рачунара и сваког примопредајника. Систем је подешен да 

ради на фреквенцији од 2336.0 MHz (што је нешто испод опсега од 2.4 GHz), који у 

великој мери користи комерцијалну бежичну опрему. Овај избор ефикасно елиминише 

нежељенa преслушавања од бежичног интернета и других уређаја који користе ISM 

опсег. Фреквенција носиоца је мерена помоћу анализатора спектра у реалном времену 

(Tektronix RSА5106А) и потврђено је да је у складу са очекивањима. 

Сваки пријемник локално мери анвелопу примљеног сигнала и претвара ову 

информацију у RSSI вредност, којој одговара јединица dBm, према подацима (datasheet) 

[68]. Информације се саопштавају на излаз пријемника помоћу UART интерфејса 

микроконтролера, који је затим конвертован у USB. Експеримент се изводи у окружењу 

које подсећа на типичну канцеларију, са столовима, мониторима, штампачима и другим 

елементима. Док се предајник креће дуж шине, он је подешен да шаље континуални 

немодулисан носилац (слично приступу коришћеном у [25]), док пријемници на свакој 

базној станици прате нивое примљеног сигнала. 
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а) Предајници. 
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б) Пријемници. 

 

Слика 7.2. Поставка мерења. а) Предајник се помера дуж шине у корацима од 1 mm.  

б) Пријемници су позиционирани да опонашају две базне станице, сваку са по две антене. 

Компјутер прикупља мерне податке са првог и другог нивоа комбиновања. 
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Слика 7.3. USB интерфејс пријемника користи јефтин USB-UART конвертор и 

уобичајену интерфејс плочу да се прилагоди RF2500T конектору. 

 

Коришћен је Python код са Spyder IDE за аутоматизацију експеримента: главна 

сврха кода је да паралелно чита податке са сваке антене и усредњава 10 узастопних 

очитавања. Сегмент кода који се користи у сваком очитавању приказан је на слици 7.4. 

Ако се на антени детектују ванредни подаци, процес усредњавања почиње изнова. Када 

се подаци са свих антена очитају, усредњени подаци се уписују у одговарајуће датотеке 

и издаје се команда да колица са предајником крену напред за 1 mm. 

 
1 

2 

3 

4 

def readRSSI(port): 
    a = port. read_until (b'm', size = 30).decode("utf−8") 

    a = a.replace('-dBm', '').replace('\r', '') 

    return a.replace('\x00', '').replace('-', '')  
 

Слика 7.4. Сегмент Python кода коришћен за очитавање низа прикупљених података са 

виртуелног COM порта. 

 

Када се добије потврда да су колица завршила са кретањем, процес читања 

података се поново покреће. Процес се завршава када колица дођу до краја шине, а затим 

се смер кретања мења пре него што је циклус поновљен. Целокупна процедура 

аквизиције је приказана као псеудокод на слици 7.5. 

Дакле, свако прелажење шине резултира са најмање 80 000 очитавања RSSI, 

имајући у виду да у систему постоје четири антене. Након усредњавања, укупан број 

RSSI тачака података је тачно 8 000 за свако обилажење. Након сваког пролаза 

предајника, померамо постоље које носи предајник, тако да следећи скуп прикупљених 

података није потпуно исти као у претходном прелазу. Наиме, претпостављамо да 

предајник у измештеном положају представља уређај D2, односно емитује сигнал 

интерференције. 

Користимо интерно генерисане RSSI податке који линеарно одговарају снази 

примљеног сигнала на следећи начин: 

)dBm(10
RSSI

10

1

R                   (7.17) 

када је сигнал изнад нивоа топлотног шума [68, слика 13] (ниво топлотног шума је испод  ̶ 

100 dBm за доступне битске брзине). Тако се одговарајућа амплитуда примљеног сигнала 

може израчунати као: 
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

r                   (7.18) 

За сваки скуп података антене, прво је примењена нормализација, тако да 

нормализована снага R̂ задовољава E[R̂] = 1. У временском домену, постоји 

нормализациона константа Ωn која дели сваки узорак, 




N

i

n
i

R
N 1

1
Ω  и стога су 

нормализовани одмерци података 𝑅𝑖 = 𝑅𝑖/𝛺. Дакле, нормализовани узорци анвелопе су 

nii ΩRr /ˆ  . Даље, одмерци се лако скалирају да представљају вишу или нижу снагу 

сигнала Ω, коришћењем nii ΩΩRΩr /)(ˆ  . 

 

01: procedure txScan()  

02:   pos ← 0 Иницијализирати старт позицију Tx 

03:   N ←  2000 Број корака 

04:   M  ← 4 Четири Rx антене укупно 

05:   while pos ++ < N do Док се носилац још увек може померати напред 

06:      for (i = 1; i ≤ M; ++ i) do Скенирање свих антена 

07:         RSSIi,pos  ← ACQUIRERSSI (i) Забележити RSSI на свакој антени 

08:      end for  

09:      carriageForward() Померити Tx један корак напред 

10:   end while Док се не досегне крај шине 

11:   carriageReturn() Помери Tx назад на почетну позицију 

12: end procedure  

13: function ACQUIRERSSI (i) RSSI за антену i 

14:     A  ← 10 Усредњавање 10 одмерака током времена 

15:     s  ← 0; k ← 1 Иницијализирати текуће суме, и бројач 

16:    ∆ ←1 Поставити праг од 1 dB for detecting outliers 

17:    while k ≤ A do Док се не очита одмерак А 

18:       rssi ← READRSSI(i) Очитати податке једном 

19:       s ← s + rssi Додати вредност суми 

20:       if │rssi  ̶  s/k│> ∆ then Детектовати могуће одступајуће одмерке 

21:            s ← 0, k ← 0 

Рестартовати очитавање ако се детектује 

одступање 

22:       end if  

23:       k ← k + 1 Прећи на следећи одмерак 

24:    end while Док су сви валидни одмерци прочитани редом 

25:    return s/A Вратити просечну RSSI вредност 

26: end function  
 

Слика 7.5. Псеудокод аквизиционе процедуре. 

 

Други резултати из литературе такође примењују нормализацију, али не на 

потпуно исти начин, тако нпр. у [21] извршена је нормализација на бази прозорске 

функције мале дужине. Да би се избегла могућа одступања и задржао фокус на главном 

делу расподеле, фитовање се врши на подацима који чине 99% CDF-а. Због тога су тачке 

које се налазе изнад 99% процењеног CDF-у искључене из процедуре фитовања. Од 

прикупљених и нормализованих података добијен je хистограм 𝐻(𝑟𝑖̂) са подопсезима, 
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нормализованим тако да представљају PDF. Број подопсега у хистограму је N = 200. 

Сваки подопсег у хистограму је представљен својом средњом вредношћу 𝑟̂𝑖 и 

одговарајућим нормализованим бројем подопсега у хистограму. 

Затим је настављено са минимизирањем следеће средње квадратне величине: 

 
2

0

))ˆ(log()ˆ(log(
1




N

i

ii rprH
N

                (7.19) 

Коришћена је процедура минимизације заснована на општој стратегији 

оптимизације симулације, која је доступна у софтверском пакету Wolfram Mathematica 

12.2. При томе, добијене вредности κ и μ представљају параметре који томе најбоље 

одговарају. Тако, за наше окружење параметри су к = 1.837, а μ = 1.057. 

 

 
Слика 7.6. Примљени нивои сигнала на свакој антени, прикупљени током једног  

обиласка предајника дуж шине. Приказани су и нивои шума ТX. 

 

 
Слика 7.7. Најбоље поклапање κ-μ PDF-а (црна линија), у поређењу са тачкама 

хистограма добијених из прикупљених података. 
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SC ради на начин да бира један од улаза са вишим SIR. Ова операција је изведена 

на главном рачунару помоћу програмског пакета Wolfram Mathematica 12.2, тачније кода 

приказаног на слици 7.8. Операција није изведена у реалном времену, већ на 

прикупљеним скуповима података. Ово не умањује уопштеност, пошто је фединг процес 

случајан, а статистичке карактеристике су идентичне када се посматрају током времена 

и током слагања. 

Улазни вектори се састоје од SIR вредности добијених као односи добијених 

података нормализованих на средњу вредност од 0 dBm, и другог неповезаног скупа 

добијених података нормализованих на неку другу средњу вредност Z dBm. Стога, су 

односи репрезентативни за SIR случајне променљиве са средњим SIR-ом једнаким Z dB. 

SC операција се врши на подацима за сваку базну станицу, па су добијена два скупа 

података. Два скупа података са појединачних базних станица су поново комбинована 

коришћењем приказаних функција софтвера, што представља комбиновање другог 

нивоа. Ове операције резултирају једним вектором података који је коначни излаз из 

система. 

 
1 

2 

3 

4 

selectionCombine[x_VectorQ, y_VectorQ] := Block[ 
  {len = Min[Length[x], Length[y]]}, 
  Return[Max /@ Transpose[{Take[x, len], Take[y, len]}]] 
]  

 

Слика 7.8. Wolfram Mathematica 12.2 код коришћен за SC комбиновање два низа 

прикупљених података. 

 

7.7. Резултати и дискусија 

Прикупљени скуп података који је резултат једног обиласка предајника дуж шине 

(са уређаја D1) приказан је на слици 7.6. Подаци се састоје од RSSI вредности на сваком 

од четири пријемника, без нормализације. Ефекти вишепутног фединга су јасно 

видљиви, јер сигнали варирају и до 30 dB. Међутим, мало је вероватно да би обе антене 

на свакој BS истовремено наишле на дубоки фединг, што је основа технике диверзити 

комбиновања. 

Подаци са сваке антене се затим нормализују у смислу да се померају нагоре у 

децибелима док средња снага не буде 0 dB. Након комбиновања нормализованих 

података за 15 обилажења (укупно 120 000 вредности), са благо промењеним позицијама 

BS сваки пут након завршетка обиласка, добија се одговарајући PDF хистограм. 

Тачке које одговарају свакој фреквенцији подопсега у хистограму приказане су 

на слици 7.7. Најбоље поклапање κ-μ PDF-а се добија за вредности параметара: κ = 1.837 

и μ = 1.057. Као што је раније објашњено, опадајући део расподеле PDF-а је значајнији у 

погледу анализе перформанси, тако да у процедури фитовања занемарујемо растући део 

расподеле након достизања 99% CDF-а. Фитована густина расподеле показује веома 

добро слагање са измереним подацима, као што се може видети на слици 7.7. κ-μ 

вредности параметара се могу тумачити као репрезентативне за директну линију 

видљивости између предајника и пријемника. 

Након обраде свих прикупљених комбинација сигнала и интерференције, на 

слици 7.9. се добија одговарајући хистограм (при томе, слика 7.9. а) је приказана у 

линеарној скали, док је слика 7.9. б) у логаритамској скали). У ту сврху, узимамо да један 

скуп података о преласку за једну антену представљају користан сигнал. Затим узимамо 

други скуп података и померамо нормализоване вредности за  ̶  10 dB тако да могу 

представљати интерференцију која потиче од D2.  
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а) Линеарна скала. 

 

 
б) Логаритамска скала. 

 

Слика 7.9. PDF за две независне случајне променљиве са идентичном расподелом 

(κ = 1.837, μ = 1.057), када је њихова релативна просечна снага подешена на 10 dB. 

Теоријска крива дата је као црна линија, док су тачке хистограма за прикупљене податке 

приказане као кружићи. 
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а) Линеарна скала. 

 
б) Логаритамска скала. 

 

Слика 7.10. Функција густине вероватноће SIR ̶ а, након SC комбинера на базној станици 

(κ = 1.837, μ = 1.057), кад је просечна снага интерференције  ̶  10 dB у односу на користан 

сигнал. Теоријска крива дата је као црна линија, а тачке хистограма за прикупљене 

податке приказани су као кружићи. 

 

Стога, након раздвајања одговарајућих вредности анвелопа из два скупа података, 

добијамо скуп података који одговара SIR са средњом вредношћу од 10 dB. Тачке 

представљају добијени хистограм, док су црне линије израчунате применом једначине 

(7.8). Евидентно је да су експериментално добијени резултати у сагласности са 
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теоријским за κ-μ модел фединга, користећи параметара κ и μ, за које је најбоље 

поклапање. 

 
а) Линеарна скала. 

 
б) Логаритамска скала. 

 

Слика 7.11. PDF SIR-а након другог нивоа комбиновања, кад је просечна снага 

интерференције од  ̶ 10 dB у односу на користан сигнал на обе базне станице. Теоријска 

крива, која претпоставља κ = 1.837, μ = 1.057, дата је као црна линија, а тачке хистограма 

за прикупљене податке приказани су као кружићи. 
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Следећи корак у анализи је SC операција на претходно добијеним SIR скуповима 

података. У ту сврху користи се једноставна функција која узима максимум од две 

вредности из два различита скупа података, као што је приказано на слици 7.8. Резултати 

добијени из експерименталних података приказани су на слици 7.10. Теоријски 

резултати су такође приказани на истој слици, а добијају се коришћењем једначине 

(7.11). Ова слика показује предности рада SC – вероватноће опадајућег дела расподеле 

су ниже од оних приказаних на слици 7.9. 

Након прве SC операције, истражују се ефекти SC комбиновања другог нивоа. 

Још једном, користећи SC скупове података добијене у претходном кораку као улазе, 

врши се извођење SC комбиновања на одговарајућим паровима скупова података. 

Добијени хистограм излазне анвелопе је приказан на слици 7.11. Одговарајуће 

теоријске криве су добијене коришћењем једначине (7.15) и у складу су са 

експерименталним подацима. Штавише, SC комбиновање другог нивоа додатно смањује 

опадајући део расподеле PDF-а, што резултира веома слабим сигналом, па то указује да 

је вероватноћа дубоког фединга веома ниска. 

На слици 7.12 је ради поређења приказана вероватноћа отказа када се користи 

једна антена, као и када се користи BS са две антене и SC, или цео систем. Праг отказа 

представља SIR вредност која је граница између исправног функционисања и отказа, а 

који зависи од конкретних технолошких и системских параметара, као што су формат 

модулације, конкретних реализација пријемника, битских брзина итд. Предности 

диверзитија се лако виде са слике 7.12. 

 
 

Слика. 7.12. Вероватноћа отказа у зависности од zth (SIR прага) за сценарио најгорег 

случаја комбиновања, где је κ = 1.837, μ = 1.057 и просечни SIR = 10 dB. 

 

Ако је праг отказа, у смислу односа сигнал/интерференција, 0 dB, пријемник са 

једном антеном би доживео отказ рада близу 10% времена, под условом да је средњи SIR 

10 dB. С друге стране, BS са две антене и SC комбинером би доживео отказ од само 0.1%, 

у истим условима. У исто време, цео систем са две такве BS-е би доживео отказ рада 

само 0.001% времена. Теоријске криве су добијене коришћењем једначина (7.10), (7.12) 

и (7.13), респективно, а одговарајући хистограми су у сагласности са њима. 
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7.8. Поређење са другим резултатима објављеним у литератури 

У литератури се може наћи значајан број теоријских радова који проистичу из κ-

μ расподеле. С друге стране, постоји само неколико радова који извештавају о 

резултатима мерења на исту тему.  

Студија о утицају различитих вишегранских SC комбинера на перформансе 

система и грешку система преко κ-μ фединг канала приказане су у [86]. Поред тога, у [94] 

се процењују брзине пребацивања двограног SC комбинера преко κ-μ фединг окружења. 

Тачни и асимптотски односи сигнал/шум (SNRs – signal-to-noise ratios) на излазу 

вишегранског MRC пријемника су добијени да би се одредила просечна грешкa симбола 

и добитак диверзитија [55]. Такође, додатне процене перформанси MRC-а са застарелим 

CSI (Channel State Information  ̶  информација о стању канала) су спроведене у [47]. У [18] 

је вршена процена вероватноће отказа преко α-μ, ɳ-μ и κ-μ фединг канала са MRC и EGC 

диверзити техникама. У овим публикацијама је представљенa само теоријска анализа. 

Експериментална карактеризација фединг канала у комуникацији тело-тело, за 

ватрогасно и спасилачко особље, према κ-μ расподели може се наћи у [25]. Такође, у [57] 

је дата процена максималне вероватноће локације паметног уређаја у IoT-у (Internet-of-

things), према измереним подацима који се добро поклапају са општим κ-μ моделом. 

Међутим, карактеризација утицаја међуканалне интерференције CCI на перформансе 

система је веома потребна у дизајну целуларних мрежа, уређај-ка-уређају, мрежа 

подручја тела (BAN  body area networks) итд. У ствари, у мобилном комуникационом 

каналу увек постоји адитивни бели Гаусов шум (AWGN), ако не другачије, онда као 

термални шум. Међутим, ниво шума је често занемарљив у поређењу са нивоом сметњи. 

У таквим окружењима, однос сигнал-интерференција (SIR) је важан критеријум у 

процени перформанси [61, 70, 83]. Са тачке гледишта пројектанта, битно је одредити 

одговарајући примљени сигнал снаге како би се смањио утицај различитих веза које раде 

на истој фреквенцији. 

На основу горе наведеног, у [98] je предложен аналитички оквир за процену 

PDF- а и CDF-а односа две променљиве које следе или α-μ, ɳ-μ или κ-μ расподеле, 

наглашавајући примену представљених резултата. Сценарио ограничен на 

интерференцију је такође анализиран у [48, 49], када је жељени сигнал подвргнут κ-μ 

федингу, а сигнал интерференције је подвргнут ɳ-μ федингу. Добијене анализе су 

приказане у смислу вероватноће прекривања (coverage probability) и просечне брзине 

канала (average channel rate) [49] и вероватноће отказа (outage probability) [48]. Поред 

тога, у [20] су добијене перформансе отказа укључујући ефекат позадинског шума. 

Експериментално заснована анализа утицаја фединга CCI на BAN који ради на 2.48 GHz 

је приказана у [21]. 

При томе, већина претходно поменутих публикација заснивају се на аналитичким 

проценама перформанси. Уопштено говорећи, представљене једначине су гломазне и 

није их лако пратити, иако су добијене за један ниво комбиновања. 

Међутим, κ-μ модел фединга пружа огромну флексибилност за опис различитих 

унутрашњих/спољашњих бежичних канала у смислу мерљивих физичких параметара. У 

[57], κ-μ је предложен као тачан модел за јефтину локализацију у паметним уређајима за 

IоТ, избегавајући већу цену пријемника глобалног система позиционирања. 

У Табели 7.2 је дато сумарно поређење експерименталних резултата за indoor 

околину [8], приказаних у овој дисертацији, са другим експерименталним резултатима 

из литературе. Упоређен је добитак и методологије подешавања система у односу на број 

прикупљених одбирака, ниво снаге излазног сигнала, искоришћене радне фреквенције, 

као и добијених параметара κ и μ у лабораторијском, тј. унутрашњем окружењу. 
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Табела 7.2. Поређење експерименталних резултата за κ-μ indoor фединг модел [8], 

приказаних у овој дисертацији, са другим експерименталним резултатима из литературе. 

Референце 
Број 

семплова 

Ниво 

снаге 

Tx  

Фреквенција 

носиоца 

Параметри фединга Ниво шума 

Rx  

Циљна 

мера κ μ 

Bhargav et 

al. [20] 
45 000 

+17,6 

dBm 
2.48 GHz 4.8-29.9 0.72-1.05 –103.4 dBm SIR 

Cotton et al. 

[25] 
240 000 

+22 

dBm 
2.45 GHz 1.26-3.22 1.08-1.43 

није 

доступно 

Ниво 

сигнала 

Kibiłda et al. 

[43] 

није 

доступно 

+23 

dBm 
mm сигнали 1.14-2.80 0.77-1.00 –91 dBm SINR 

Експер. 

резултати у 

дисертацији 

120 000 
0 

dBm 
2.336 GHz 1.837 1.057 –106 dBm 

SIR, 

диверзити 

пријем 

 

Мерења су вршена у различитим окружењима, као што су анехоичне и 

реверберационе коморе, али и у лабораторијском окружењу које одговара систему 

приказаном у овој дисертацији. За нормализацију добијених резултата у [20] коришћена 

је нормализација на бази прозорске функције мале дужине, која је намењена уклањању 

компоненти спорог фединга. У [25] извршена су мерења како би се окарактерисали 

канали комуникације тело-тело за ватрогасно-спасилачко особље у затвореним 

просторима. У [43] експериментално је потврђен модел канала κ-μ за системе 

милиметарских таласа у затвореним окружењима. Наиме, мерења анвелопе сигнала се 

користе за карактеризацију параметара фeдинга, док остатак рада користи ове податке за 

аналитичку карактеризацију других параметара мреже релевантних за процену 

перформанси и имплементацију, са односом сигнал – интерференција и шум (SINR) као 

основним параметром система. У овим радовима су примењене различите методологије 

и подешавања система, али се резултати о параметрима фединга за унутрашње средине 

у целини слажу, што потврђују и резултати у овој дисертацији. 

У овој глави је представљен модел физичког система коришћењем јефтиних 

примопредајника, помоћу којих су прикупљени експериментални подаци да би се 

истражио вишеструки фединг и утицај међуканалне интерференције [8]. Тачност је 

вишеструко проверена коришћењем прецизнијих инструмената доступних у 

лабораторији. При томе, представљена је анализа експериментално добијених података 

бежичних канала у затвореном простору преко којих се обавља комуникација између 

система диверзитија који се састоји од две BS-е, од којих свака има два SC пријемника и 

додатни SC пријемник на другом нивоу комбиновања. Свака BS је опремљена са две 

неусмерене антене. Претпостављено је присуство другог уређаја, који је тумачен као 

ометач. Покрети мобилног примопредајника вршени су у корацима од 1 mm, што је 

резултирало континуираним нивоима сигнала, погодним за статистичку анализу. Поред 

тога, резултати су поновљиви, у одсуству особа у лабораторији, када се експеримент 

изводи са удаљеним приступом. Предвиђени пренос је са уређаја који је мобилан у зони 

покривања обе BS. Резултати мерења потврђују модел канала пропагације и даље 

пружају увид у побољшање диверзити пријема на два нивоа, у поређењу са пријемом са 

једном антеном [8], што је један значајан допринос ове дисертације.  

Дата мерења су мерења реалног сценарија канала (κ = 1.837, μ = 1.057), чиме је 

премошћен јаз између аналитичких и експерименталних резултата (већина претходно 

објављених радова на ову тему заснована је на теоријској анализи κ-μ фединг расподеле), 

док дати модел система приказан у овој глави није раније експериментално описан [8], 

што представља још један значајан допринос ове дисертације.  

Статистички третман прикупљених мерења је приказан и коришћен у даљој 

анализи перформанси комуникационог система у затвореном окружењу са ограниченим 
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сметњама. Утврђено је да су експериментални резултати у сагласности са аналитички 

развијеним изразима за SIR и метрику перформанси отказа и оправдали употребу κ-μ 

модела као погодног за такве мреже и окружења ограничена интерференцијом [8], што 

је, такође, посебан допринос ове дисертације.  

Приказана анализа је, такође, применљива и за пренос низа. Ако је потребно да се 

сигнал врати из мреже ка уређају, принцип избора омогућава идентификацију антене која 

је најпогоднија за пренос података пошто је канал симетричан. Ово заузврат омогућава 

смањење укупне снаге преноса и самим тим смањује могуће сметње према другим 

уређајима [8], што је још један посебан допринос ове дисертације. 

Дакле, презентовани резултати су нови и могу бити корисни у пројектовању 

бежичних система у окружењу ограниченом интерференцијом у смислу предвиђања 

перформанси система и отказа система. 
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8. ЗАКЉУЧАК 

 Предмет истраживања у овој докторској дисертацији су бежични 

телекомуникациони системи и побољшање њихових перформанси када су присутни брзи 

фединг, спори фединг и међуканална интерференција.  

 Циљ истраживања ове докторске дисертације је да се одреде диверзити шеме и 

њихове карактеристике за побољшање перформанси бежичних телекомуникационих 

система. Истраживања представљена у дисертацији су изведена на основу аналитичких 

метода, метода математичког и нумеричког моделовања, као и симулације. Извршена је и 

анализа експериментално добијених података бежичних канала у затвореном простору, 

преко којих се обавља комуникација између уређаја и две базне станице (BS).  

 У другој глави дисертације разматране су статистичке карактеристике брзог 

Рајсовог фединга. Како је к-μ расподела предмет разматрања ове докторске дисертације, 

било је неопходно у овој глави размотрити Рајсову расподелу као њен специјалан случај. 

При томе, aналитички су најпре одређене статистичке карактеристике максимума две 

независне Рајсове случајне променљиве, а затим и статистичке карактеристике максимума 

три независне Рајсове случајне променљиве. Сви аналитички изрази су изведени у 

затвореном облику, што представља значајан допринос ове дисертације. 

 У трећој глави је разматран к-μ случајни процес. При томе, одређенe су густина 

вероватноће (PDF) и кумулативна вероватноћа (CDF) к-μ случајне променљиве x, 

карактеристична функција од x, момент n-тог реда, средња вредност, средња квадратна 

вредност, варијанса од x, кao и средњи број осних пресека стохастичког процеса фединга 

чија маргинална расподела одговара расподели случајне променљиве x. Дат је графички 

приказ нумеричких резултата за PDF к-μ случајне променљиве x, за број кластера 2 , 

који је упоређен са симулационим резултатима (хистограм), за број случајних одмерака 

N = 100 000, где се види добро поклапање истих. Одређени су PDF и CDF количника две 

к-μ случајне променљиве yxz /  и средњи број осних пресека. Дат је графички приказ 

нумеричких и симулационих резултата за PDF од z, за одређене вредности параметара и 

број случајних одмерака N = 1 000, 10 000 и 100 000, респективно, где се може видети 

добро поклапање већ при N = 10 000. При томе, за број одмерака N = 100 000 добијено је 

најбоље поклапање нумеричких и симулационих резултата . Поред наведених резултата, 

дат је графички приказ нумеричких резултата за CDF од z у зависности од анвелопе 

сигнала. Израчунат је и средњи број осних пресека од z. За производ две к-μ случајне 

променљиве израчуната је PDF у затвореном облику, што представља значајан допринос 

дисертације. При томе, дат је графички приказ нумеричких и симулационих резултата за 

PDF, за задате вредности параметара и број одмерака N = 1 000, 10 000 и 100 000, 

респективно, где се може видети добро поклапање већ при N = 10 000. Поред тога, дат је 

и графички приказ нумеричких резултата за CDF у зависности од анвелопе сигнала. PDF 

од количника к-μ случајне променљиве и производа две к-μ случајне променљиве је 

одређена аналитички , где је због сложености једначине графички приказ нумеричких 

резултата добијен коришћењем методе интерполације. На исти начин је одређена PDF од 

количника производа две к-μ случајне променљиве и к-μ случајне променљиве, Иначе, за 

графички приказ резултата је коришћен програм Wolfram Mathematica 12.2. Добијени 

резултати се могу даље применити за анализу перформанси бежичних 

телекомуникационих система код којих је у каналу са к-μ федингом присутна и 

међуканална интерференција која је под утицајем два к-μ фединга. 

 У четвртој глави је разматран случај када је у бежичним каналима присутан спори 

Гама фединг и брзи к-μ фединг. Аналитички је одређен PDF за количник производа 

квадратног корена од Гама случајне променљиве и к-μ случајне променљиве, и к-μ 

случајне променљиве. На исти начин је одређен и PDF за количник к-µ случајне 
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промењиве, и производа квадратног корена од Гама случајне промењиве и к-µ случајне 

промењиве. Такође, аналитички је одређен PDF за два производа квадратног корена од 

Гама случајне промењиве и к-µ случајне промењиве, при чему је дат графички приказ 

нумеричких резултата за исте. За наведени случај, CDF није било могуће одредити у 

затвореном облику због сложености једначина, али је одређена нумерички коришћењем 

програма Wolfram Mathematica 12.2, при чему је дат и њен графички приказ. Добијени 

резултати се могу даље применити за анализу перформанси бежичних 

телекомуникационих система код којих је у каналу присутан спори Гама фединг и брзи 

к-μ фединг, а при томе, присутна међуканална интерференција под утицајем брзог к-μ 

фединга.  

 У петој глави је разматран макродиверзити систем који се састоји од два 

микродиверзити SC комбинера са два улаза и једног макродиверзити SC комбинера. 

Макродиверзити систем се користи да се истовремено смањи утицај брзог к-μ фединга и 

спорог Гама фединга на перформансе система. Прво су аналитички одређени PDF и CDF 

к-μ сигнала на улазу и на излазу SC комбинера, респективно. При томе, добијени изрази 

су коришћени за израчунавање здружене PDF и CDF на излазу из макродиверзити SC 

комбинера. Треба рећи да је CDF изведена у отвореном облику, јер због сложености није 

могла бити израчуната у затвореном облику. Поред тога, дати су графички прикази за 

све прорачунате формуле PDF-a и CDF-a, као и графички прикази за вероватноћу отказа, 

у зависности од нивоа прага, коришћењем програма Wolfram Mathematica 12.2. 

У шестој глави је разматран макродиверзити систем који се састоји од два 

микродиверзити SC комбинера са два улаза и једног макродиверзити SC комбинера, и то 

у присуству к-μ брзог фединга, Гама спорог фединга и к-μ међуканалне интерференције. 

Прво су аналитички одређени PDF и CDF на излазу из SC комбинера, а затим и PDF и 

CDF на излазу разматраног макродиверзити система. Затим су дати графички прикази за 

све прорачунате формуле PDF-a и CDF-a, као и графички прикази за вероватноћу отказа 

на излазу из SC комбинера и макродиверзити SC комбинера, у зависности од задатог 

нивоа прага, применом програма Wolfram Mathematica 12.2. Приказан је и добитак макро 

комбиновања, изражен у децибелима, у зависности од коефицијента корелације сигнала 

ρ. Упоређивањем нивоа захтеваног прага за идентичну вредност вероватноће отказа од 

0,001 на излазу микродиверзити SC комбинера (добијена вредност од приближно – 6 dB) 

и на излазу макродиверзити SC комбинера (добијена вредност од приближно – 10 dB), 

констатовано је знатно побољшање применом макродиверзити технике, што је један од 

значајнијих доприноса дисертације. Поред тога, применом разматраног макродиверзити 

система смањује се вероватноћа отказа без повећања ширине фреквенцијског опсега и 

без повећања снаге на предаји, што је, такође, значајан допринос дисертације. Исто тако, 

применом разматраног макродиверзити система показано је да се смањењем 

корелационог коефицијента Гама спорог фединга ρ, а без повећања ширине 

фреквенцијског опсега и без повећања снаге на предаји, повећава добитак макро 

комбиновања, што је значајан допринос дисертације. 

У седмој глави је представљен модел физичког система коришћењем 

економичних примопредајника помоћу којих су прикупљени експериментални подаци 

да би се истражио вишеструки фединг и утицај међуканалне интерференције. Тачност је 

вишеструко проверена коришћењем прецизнијих инструмената доступних у 

лабораторији. Систем који је испитиван, био је систем диверзитија који се састоји од две 

BS-е, од којих свака има два SC пријемника и додатни SC пријемник на другом нивоу 

комбиновања. Свака BS је опремљена са две неусмерене антене. Претпостављено је 

присуство другог уређаја, који је тумачен као ометач. Покрети мобилног 

примопредајника вршени су у корацима од 1 mm, што је резултирало континуираним 

нивоима сигнала, погодним за статистичку анализу. Наиме, дата су мерења реалног 
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сценарија канала (κ = 1.837, μ = 1.057), чиме је премошћен јаз између аналитичких и 

екперименталних резултата. При томе, мерења су показала веома добро поклапање са 

теоријским резултатима и оправдали употребу κ-μ модела, као погодног за такве мреже 

и окружења ограничена интерференцијом. Такође, показало се да су подаци са 

појединачних антена у сагласности са резултатима мерења, док дати модел система 

приказан у овој глави није раније експериментално описан. Добијени резултати су 

коришћени за процену вероватноће отказа за реални комуникациони сценарио. Наиме, 

на основу добијених резултата за вероватноћу отказа, као једне од перформанси 

телекомуникационих система, показана је оправданост примене диверзити технике, која 

може бити корисна у пројектовању бежичних система у окружењу са ограниченом 

интерференцијом у смислу предвиђања перформанси система и отказа система. 

С обзиром на актуелност области мобилних комуникација и развој нових 

генерација мобилних система, правац будућег истраживања била би анализа бежичних 

комуникационих система у каналима простирања, ограничених сметњама, у присуству 

вишеструких сметњи. Такође, планирано је да се прошири експериментална поставка за 

истраживање широкопојасних преносних канала. 

  



 

122 

 

ЛИТЕРАТУРА 

[1] Abramowitz M. and Stegun I. Handbook of Mathematical Functions, United States 

Government Printing Office, Washington, USA, 1970. ISBN 10: 0160002028 

[2] Abu-Dayya A. A. and Beaulieu N. C. „Analysis of switched diversity systems on 

generalized-fading channels“, IEEE Transactions on Communications, vol. 42, no. 11, pp. 

2959-2966, November 1994. DOI: 10.1109/26.328977 

[3] Abu-Dayya A. A. and Beaulieu N. C. „Diversity MPSK receivers in cochannel 

interference“, IEEE Transactions on Vehicular Technology, vol. 48, no. 6, pp. 1959-1965, 

Nov. 1999. DOI: 10.1109/25.806789 

[4] Abu-Dayya A. A. and Beaulieu N. C. „Micro- and Macrodiversity MDPSK on Shadowed 

Frequency-Selective Channels“, IEEE Transactions on Communications, vol. 43, no. 8, pp. 

2334-2343, August 1995. DOI: 10.1109/26.403766 

[5] Abu-Dayya A. A. and Beaulieu N. C. „Switched diversity on microcellular Ricean 

channels“, IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 970-976, 

November 1994. DOI: 10.1109/26.403766 

[6] Adamchik V. S. and Marichev O. I. „The algorithm for calculating integrals of 

hypergeometric type functions and its realization in reduce system“, Proceedings of the 

International Symposium on Symbolic and Algebraic Computation, pp. 212-224, 20-24 July 

1990, Tokyo, Japan. ISBN: 0201548925 

[7] Adinoyi A., Yanikomeroglu H., Loyka S. „Hybrid macro- and generalized selection 

combining microdiversity in lognormal shadowed Rayleigh fading channels“, Proceedings 

of IEEE International Conference on Communications, vol. 1, pp. 244-248, 20-24 June 2004, 

Paris, France. DOI: 10.1109/ICC.2004.1312488 

[8] Aleksić D., Kovačević A., Anastasov J., Milić D. „Experimental measurement and SIR 

statistical analysis of wireless diversity reception over κ–μ fading channels“, Measurement, 

vol. 217, 10 pages, August 2023. https://doi.org/10.1016/j.measurement.2023.113048  

[9] Aleksić D., Nešić N., Milić D. „Kumulativna gustina verovatnoće za količnik κ-µ 

promenljive“, Zbornik radova ATVSS Niš, ISBN: 978-86-81912-08-9, str. 25-28, December 

2021. http://akademijanis.edu.rs/ 

[10] Aleksić D., Krstić D., Stefanović M., Petković G., Marjanović I., Radenković D. „Outage 

Probability Comparison of MRC, EGC and SC Receivers over Short Term Fading 

Channels“, International Journal of Communications, ISSN: 2367-8887, vol. 1, pp. 104-

109, Februay 2016.  https://api.semanticscholar.org/CorpusID:149311670 

 [11] Aleksić D., Sekulović N., Milosavljević S. „Statistička karakteristika količnika Rejlijevog 

signala i zbira Rejlijeve interferencije i Gausovog šuma“, INFOTEH - JAHORINA, Vol. 8, 

Ref. B - I - 2, pp. 86-89, March 2009, Босна и Хецеговина. 

https://infoteh.etf.ues.rs.ba/zbornik/2009/radovi/B-I/B-I-2.doc 

[12] Aleksić D., Sekulović N., Stefanović M. „Outage Probability of System with Selection 

Combining over Correlated Weibull Fading Channels in the Presence of Rayleigh Cochannel 

Interference“, ELECTRONICS AND ELECTRICAL ENGINEERING, ISSN: 1392-1215, 

T191, vol. 90, no. 2, pp. 7-10, 2009. https://eejournal.ktu.lt/index.php/elt/article/view/10279 

[13] Al-Hussaini E. K. Al-Bassiouni, A.M., Mourad H.M., Al-Shennawy H.  „Composite 

macroscopic and microscopic diversity of sectorized macrocellular and microcellular mobile 

radio systems employing RAKE receiver over Nakagami fading plus lognormal shadowing 

https://www.abebooks.com/9780160002021/Handbook-Mathematical-Functions-Formulas-Graphs-0160002028/plp
https://doi.org/10.1109/ICC.2004.1312488
https://doi.org/10.1016/j.measurement.2023.113048
http://akademijanis.edu.rs/
https://api.semanticscholar.org/CorpusID:149311670
https://api.semanticscholar.org/CorpusID:149311670
https://infoteh.etf.ues.rs.ba/zbornik/2009/radovi/B-I/B-I-2.doc
https://eejournal.ktu.lt/index.php/elt/article/view/10279
https://eejournal.ktu.lt/index.php/elt/article/view/10279


 

123 

 

channel“, Wireless Personal Communications, vol. 21, no. 3, pp. 309-328, June 2002. 
https://doi.org/10.1023/A:1016076700413 

 [14] Alouini M., Goldsmith A. „Capacity of Rayleigh fading channels under different adaptive 

transmission and diversity-combining techniques“, IEEE Transactions on Vehicular 

Technology, vol. 48, no. 4, pp. 1047-1065, July 1999. DOI: 10.1109/25.775366 

[15] Al-Samman A.M., Rahman T.A., Hadri M., Khan I., Chua T.H. „Experimental UWB 

indoor channel characterization in stationary and mobility scheme“, Measurement, vol. 111, 

pp 333–339, December 2017. DOI: 10. 1016/j.measurement.2017.07.053 

[16] Anderson T. W. An introduction to multivariate statistical analysis. Wiley, London, 3rd 

edition, July 2003. ISBN: 978-0-471-36091-9 

[17] Atanasov J., Panić S., Stefanović M., Milenković V. „Capacity of correlative Nakagami-

m fading channels under adaptive transmission and maximal-ratio combining diversity 

technique“, Journal of Communications Technology and Electronics, vol. 58, pp. 1227–

1234, November 2013. DOI:10.1134/S1064226913130044  

[18] Ben Issaid C., Alouini M. S., Tempone R. „On the fast and precise evaluation of the outage 

probability of diversity receivers over α–μ, κ–μ, and η–μ fading channels“, IEEE 

Transactions on Wireless Communications, vol. 17, no. 2, pp. 1255–1268, February 2018. 

DOI: 10.1109/TWC.2017.2777465 

[19] Bernhardt R. C. „Macroscopic diversity in frequency reuse radio systems“, IEEE Journal 

on Selected Areas in Communications, vol. 5, no. 5, pp. 862-870, June 1987. 

DOI: 10.1109/JSAC.1987.1146594 

[20] Bhargav N., da Silva C. R. N., Chun Y. J., Cotton S. L., Yacoub M. D. „Co-channel 

interference and background noise in κ–μ fading channels“, IEEE Communications Letters, 

vol. 21, no. 5., pp. 1215–1218, May 2017. DOI: 10.1109/LCOMM.2017.2664806 

[21] Bhargav N., Cotton S. L., Smith D. B. „An experimental-based analysis of inter-BAN co-

channel interference using the κ–μ fading model“, IEEE Transactions on Antennas and 

Propagation, vol. 65, no. 2, pp. 983–988, February 2017.  

DOI: 10.1109/TAP.2016.2634521  

 [22] Boyer J., Falconer D. D. and Yanikomeroglu H. „Multihop diversity in wireless relaying 

channels“, IEEE Transactions on Communications, vol. 52, no. 10, pp. 1820-1830, October 

2004. DOI: 10.1109/TCOMM.2004.836447 

[23] Brennan D. „Linear diversity combining techniques“, Proceedings of Institute of Radio 

Engineers, vol. 47, pp. 1075-1102, June 1959. DOI: 10.1109/JRPROC.1959.287136 

[24] Cheng Y. and Tellambura C. „Distribution functions of selection combiner output in 

equally correlated Rayleigh, Rician, and Nakagami-m fading channels “, IEEE Transactions 

on Communications, vol. 52, no. 11, pp. 1948-1956, November 2004. 
DOI: 10.1109/TCOMM.2004.836596 

[25] Cotton S. L., Scanlon W. G., Guy J. „The κ–μ distribution applied to the analysis of fading 

in body to body communication channels for fire and rescue personnel“, IEEE Antennas and 

Wireless Propagation Letters, vol. 7, pp. 66–69, April 2008. 

DOI: 10.1109/LAWP.2008.915807  

[26] Dong X. and Beaulieu N. C. „Average level crossing rate and average fade duration of  

selection diversity“, IEEE Communications Letters, vol. 5, pp. 396-398, December 2000. 

DOI: 10.1007/978-1-4757-3789-9_11 

https://doi.org/10.1023/A:1016076700413
http://dx.doi.org/10.1134/S1064226913130044
https://doi.org/10.1109/JSAC.1987.1146594
https://doi.org/10.1109/LCOMM.2017.2664806
https://doi.org/10.1109/JRPROC.1959.287136
https://doi.org/10.1109/TCOMM.2004.836596
https://doi.org/10.1109/LAWP.2008.915807


 

124 

 

 

[27] Fang K. T., Zhang Y. T. Generalized multivariate analysis, Science Press, University of 

Michigan, 1990. ISBN 7030002342, 9787030002341 

[28] Fraidenraich G. and Yacoub M. D. „The    and   k  fading distributions“, 

Proceedings of IEEE International Symposium on Spread Techniques and Applications, pp. 

16-20, 28-31 August 2006. Manaus, Brazil. DOI: 10.1109/ISSSTA.2006.311725 

[29] Freeman L. R. Fundamentals of telecommunications, Wiley-IEEE Press, 2nd edition, May 

2005. ISBN: 978-0-471-72093-5  

[30] Gradshteyn I., Ryzhik I. Tables of Integrals, Series, and Products, Academic Press, 1980. 

ISBN 978-0-12-294760-5 

[31] Hamdi K. A. „Moments and Autocorrelations of the Signal to Interference Ratio in 

Wireless Communications“, Proceedings of the International Conference on 

Communications, pp. 1345-1348, 19-23 May 2008, Beijing, China. 

DOI: 10.1109/ICC.2008.261 

[32] Hasna M. O. and Alouini M. S. „ A performance study of dual-hop transmissions with 

fixed gain relays“, IEEE Transactions on Wireless Communications, vol. 3, no. 6, pp. 1963 

– 1968, January 2005. DOI: 10. 1109/TWC.2004.837470 

[33] Hasna M. O. and Alouini M. S. „Outage probability of multihop transmission over 

Nakagami fading channels“, IEEE Communications Letters, vol. 7, no. 5, pp. 216-218, 2003. 

DOI: 10.1109/LCOMM.2003.812178  

[34] Helstrom C. W. Probability and Stochastic Processes for Engineers, Macmillan, 

University of California, 2nd edition, 1991. ISBN-10:  0023535717 

[35] Ibnkahla M. Signal processing for mobile communications, Boca Raton, CRC Press, 

August 2004. https://doi.org/10.1201/9780203496510 

[36] Jakes W. Microwave Mobile Communications, John Wiley and Sons, 1974. ISBN: 0-471-

43720-4 

[37] Jakšić B., Aleksić D., Minić S., Spalević P., Dinić I., Stefanović M. „Gustina verovatnoće 

signala na izlazu iz makrodiverziti sistema sa tri mikrodiverziti SC prijemnika u prisustvu 

brzog κ-µ fedinga i Gama sporog fedinga“, International Scientific Conference of IT and 

Business-Related Research, Synthesis 2015, Singidunum University, pp. 291-296, 16-17. 

April 2015, Belgrade, Serbia. ISBN 978-86-7912-595-8  

https://doi.org/10.15308/Synthesis-2015-291-296  

[38] Jakšić B., Stefanović M., Aleksić D., Radenković D., Minić S. „First–Order Statistical 

Characteristics of Macrodiversity System with Three Microdiversity MRC Receivers in the 

Presence of κ-μ Short-Term Fading Gamma Long-Term Fading“, Journal of Electrical and 

Computer Engineering, Volume 2016, 9 pages, November 2016. ISSN: 2090-0147 

http://dx.doi.org/10.1155/2016/9689586  

[39] Jeong W. C. and Chung J. M. „Analysis of macroscopic diversity combining of MIMO 

signals in mobile communications“, AEU - International Journal of Electronics and 

Communications, vol. 59, no. 8, pp. 454-462, December 2005. DOI: 

10.1016/j.aeue.2005.01.004 

[40] Karagiannidis G. K. „Performance analysis of SIR-based dual selection diversity over 

correlated Nakagami-m fading channels,“ IEEE Transactions on Vehicular Technology, vol. 

52, no. 5, pp. 1207-1216, September 2003. DOI: 10.1109/TVT.2003.816612 

https://doi.org/10.1109/ISSSTA.2006.311725
https://doi.org/10.1109/ICC.2008.261
https://doi.org/10.1201/9780203496510
https://doi.org/10.15308/Synthesis-2015-291-296
http://dx.doi.org/10.1155/2016/9689586
https://doi.org/10.1109/TVT.2003.816612


 

125 

 

[41] Karagiannidis G. K., Zogas D. A., Kostopoulos S. A. „An Efficient Approach to 

Multivariate Nakagami-m Distribution Using Green’s Matrix Approximation“, IEEE 

Transaction on Wireless Communications, vol. 2, no. 5, pp. 883-889, September 2003. 

DOI: 10.1109/TWC.2003.816792 

[42] Karagiannidis G. K., Zogas D. A., Kostopoulos S. A. „On the multivariate Nakagami-m 

distribution with exponential correlation“, IEEE Transaction on Communications, vol. 51, 

no. 8, pp. 1240-1244, August 2003. DOI: 10.1109/TCOMM.2003.815071 

[43] Kibiłda J., MacKenzie A. B., Abdel-Rahman M. J., Yoo S. K. Giordano L. G., Cotton S. 

L., Marchetti N., Saad W., Scanlon W.G., Garcia-Rodriguez A., López-Pé D., Claussen H., 

DaSilva L.A. „Indoor millimeter-wave systems: Design and performance evaluation“, 

Proceedings of IEEE, vol. 108, no. 6, pp. 923–944, May 2020.  

DOI: 10.1109/JPROC.2020.29.89189  

[44] Krstić D., Stefanović M., Doljak V., Aleksić D., Yassein M. M. B., Gligorijević M. 

„Performance Analysis of Wireless Systems in the Presence of κ-μ Short Term Fading, 

Gamma Long Term Fading and κ-μ Cochannel Interference“, 21st International Conference 

on Applied Electronics (AE), pp. 135-140, 06-07 September 2016, Pilsen, Czech Republic. 

DOI: 10.1109/AE.2016.7577258 

 [45] Krstić D. S., Suljović S., Stefanović M. C., Yassein M. M. B., Aleksić D. „New Results 

and Applications about the Level Crossing Rate of SC Receiver output Signal in the Presence 

of Gamma Shadowing and κ-µ or Rician Multipath Fading“, WSEAS TRANSACTIONS on 

CIRCUITS and SYSTEMS, ISSN: 1109-2734, Vol. 20, pp. 118-127, 2021.  

 [46] Krstić D., Stefanović M. C., Aleksić D., Marjanović I., Petković G. „Performance of 

Macrodiversity System with Two SC Microdiversity Receivers in the Presence of Rician 

Fading“, Recent Advances in Communications, Proceedings of the 19th International 

Conference on Communications, (part of CSCC 2015), ISSN: 1790-5117, ISBN: 978-1-

61804-318-4, pp. 161-166, 16-20 July 2015, Zakynthos Island, Greece.  

http://www.inase.org/library/2015/zakynthos/bypaper/COMMUN/COMMUN-24.pdf  

[47] Kumar P., Sahu P.R. „Analysis of M -PSK with MRC receiver over κ–μ fading channels 

with outdated CSI“, IEEE Wireless Communications Letters, vol. 3, pp. 557–560, September 

2014. DOI: 10.1109/LWC.2014.2355849  

[48] Kumar S., Chandrasekaran G., Kalyani S. „Analysis of outage probability and capacity for 

κ–μ/η–μ faded channel“, IEEE Communications Letters, vol. 19, no. 2, pp. 211–214, January 

2015. DOI: 10.1109/LCOMM.2014.2371051 

[49] Kumar S., Kalyani S. „Outage probability and Rate for κ–μ Shadowed fading in 

Interference Limited Scenario“, IEEE Transactions on Wireless Communications, vol. 16, 

no. 12, pp. 8289–8304, October 2017. DOI: 10. 1109/TWC.2017.2760822 

[50] Lee W. C. Y. Mobile Communications Design Fundamentals, Wiley, January 1993. 

DOI:10.1002/9780470930427 

[51] Luo J. and Yelder J. „A statistical simulation model for correlated Nakagami fading 

channels“, Communication Technology Proceedings, vol. 2, pp. 1680-1684, January 2000. 

DOI: 10.1109/ICCT.2000.890981 

[52] Lutz E., Cygan D., Dippold M., Dolainsky F., and Papke W. „The land mobile satellite 

communication channel-recording, statistics, and channel model“, IEEE Trans. Veh. 

Technol., vol. 40, no. 2, pp. 375-386, May 1991. DOI: 10.1109/25.289418 

https://doi.org/10.1109/TWC.2003.816792
https://doi.org/10.1109/TCOMM.2003.815071
http://www.inase.org/library/2015/zakynthos/bypaper/COMMUN/COMMUN-24.pdf


 

126 

 

[53] Marsaglia G., Tsang W. W. „A simple method for generating Gamma Variables“, ACM 

Transactions on Mathematical Software, vol. 26, no. 3, pp. 363-372, September 2000. DOI: 

10.1145/358407.358414 

[54] Mendes J. R., Yacoub M. D. „Closed-form generalized power correlation coefficient of 

Riceaan channels“, XXII Simpósio Brasileiro de Telecomunicações, pp. 1050-1054,  04-08 

September 2005, Campinas, Spain. DOI: 10.14209/sbrt.2005.1050  

[55] Milisic M., Hamza M., Hadzialic M. „BEP/SEP and outage performance analysis of L-

branch maximal-ratio combiner for κ–μ fading“, International Journal of Digital Multimedia 

Broadcasting, Wiley, vol. 2009, Issue 1, April 2009. http://dx.doi.org/10.1155/2009/573404 

[56] Mitrinovic D. S., Keckic J. D. The Cauchy method of residues: theory and applications, 

vol. 9, Springer Science & Business Media, Dordrecht, Netherlands, 1984. ISBN 90-277-

1623-4 

[57] Pandey A., Tiwary P., Kumar S., Das S.K. „FadeLoc: Smart device localization for 

generalized κ–μ faded IoT environment“, IEEE Trans. on Signal Process., vol. 70, pp. 3206–

3220, June 2022. DOI: 10.1109/TSP.2022.3183527 

[58] Panić S. R. „Smanjenje uticaja fedinga na performanse bežičnih telekomunikacionih 

sistema”, doktorska disertacija, Elektronski fakultet, Univerzitet u Nišu, 2010.  

[59] Panic S., Stefanovic M., Anastasov J., Spalevic P. Fading and Interference Mitigation in 

Wireless Communications, 1th edition, CRC Press, Taylor & Francis Group, LLC, Boca 

Raton, FL, USA, December 2013, https://doi.org/10.1201/b16275  

[60] Papoulis P., Pillai S.U. Probability, Random Variables, and Stochastic Processes, 4th 

edition, McGraw-Hill, New York, USA, 2002. ISBN: 0-07-366011-6 

[61] Parsons J. D. The Mobile Radio Propagation Channel, 2nd edition, Wiley,  December   

2000. ISBN: 978-0-471-98857-1 

[62] Pasku V., Fravolini M. L., Moschitta A. „Effects of antenna directivity on RF ranging 

when using space diversity techniques“, Measurement, vol. 98, pp. 429–438, February 2017. 

https://doi.org/10.1016/j.measurement.2015.11.030 

[63] Perić M., Jakšić B., Aleksić D., Randjelović D., Stefanović M. „Outage Probability of 

Macrodiversity Reception in the Presence Fading and Weibull Cochannel Interference“, 

Tehnički vjesnik  Tehnical Gazette, ISSN: 1848-6339 (Online), vol. 25, no. 2, pp. 376-381, 

March 2018. https://doi.org/10.17559/TV-20161227102847 

[64] Proakis J., Salehi M. Digital Communications, 4th edition, Mcgraw Hill Higher  Education,  

New York, USA,  January 2000. ISBN-10: 0071181830  

[65] Rappaport T. S. Wireless Communications: Principles and Practice, 2nd edition, 

Prentice Hall, January 2002. ISBN 10: 0130422320  

[66] Reig J., Martínez-Amoraga, M.Á., Rubio, L. „Generation of bivariate Nakagami-m fading 

envelopes with arbitrary not necessary identical fading parameters“, Wireless Commutations 

and Mobile Computing, vol. 7, no. 4, pp. 531-537, September 2006. 

https://doi.org/10.1002/wcm.386 

 [67] Reig J. „Multivariate Nakagami-m distribution with constant correlation model“, AEU-

International Journal of Electronics and Communications, Archiv für Elektronik und 

Übertragungstechnik, vol. 63, no. 1, pp. 46-51, 2007. DOI: 10.1016/j.aeue.2007.10.009. 

[68] RF transceiver, CC2500, low-cost, low-power, 2.4 GHz, Texas Instruments, 2008. Online: 

https://www.ti.com/lit/gpn/cc2500 (Accessed 26 August 2022).  

http://dx.doi.org/10.14209/sbrt.2005.1050
http://dx.doi.org/10.1155/2009/573404
https://doi.org/10.1201/b16275
https://doi.org/10.1016/j.measurement.2015.11.030
https://doi.org/10.17559/TV-20161227102847
https://doi.org/10.1002/wcm.386
https://www.ti.com/lit/gpn/cc2500


 

127 

 

[69] Rice S. O., „Statistical properties of a sine wave plus random noise“, The Bell System 

Technical Journal, vol. 27, no. 1, pp. 109-157, January 1948. DOI: 10.1002/j.1538-

7305.1948.tb01334.x 

[70] Romero-Jerez J.M., Goldsmith A. J. „Receive antenna array strategies in fading and 

interference: an outage probability comparison“, IEEE Transactions on Wireless 

Communications, vol. 7, no. 3, pp. 920–932, March 2008. DOI:10.1109/TWC.2008.060705 

[71] Sagias N. C., Karagiannidis G. K., Mathiopulous P. T. and Tsiftsis T. A. „On the 

performance analysis of equal-gain diversity receivers over generalized gamma fading 

channels”, IEEE Transactions on Wireless Communications, vol. 5, no. 10, pp. 2967-2975, 

October 2006. DOI: 10.1109/TWC.2006.05301. 

[72] Sekulović N., Stefanović M., Denić D., Aleksić D. „Performance analysis of signal-to- 

interference-plus-noise ratio-based selection diversity over correlated Rayleigh fading 

channels“, IET Communications, ISSN: 1751-8636 (Online), vol. 5, no. 2, pp. 127-134, 

January 2011. https://doi.org/10.1049/iet-com.2010.0143 

[73] Shankar P. M. „Analysis of microdiversity and dual channel macrodiversity in shadowed 

fading channels using a compound fading model“, AEU-International Journal of Electronics 

and Communications, vol. 62, no. 6, pp. 445-449, June 2008. 

  DOI: 10.1016/j.aeue.2007.06.008.  

[74] Shankar P. M. „Error Rates in Generalized Shadowed Fading Channels“, Wireless 

Personal Communications, vol. 28, no. 3, pp. 233-238, February 2004. DOI: 

10.1023/B:wire.0000032253.68423.86 

[75] Shankar P. M. „Outage probabilities in shadowed fading channels using a compound 

statistical model“, IEE Proceedings-Communications, vol. 152, no. 6, pp. 828-832, January 

2006. DOI: 10.1049/IP-COM:20045142 

[76] Shankar P. M. „Outage Probabilities of a MIMO Scheme in Shadowed Fading Channels 

with Micro- and Macrodiversity Reception“, IEEE Transactions on Wireless 

Communications, vol. 7, no. 6, pp. 2015-2019, June 2008. DOI: 10.1109/TWC.2008.070053 

[77] Shankar P. M. „Performance Analysis of Diversity Combining Algorithms in Shadowed 

Fading Channels“, Wireless Personal Communications, vol. 37, no. 1, pp. 61-72, March 

2006. DOI: 10.1007/s11277-006-1080-9 

[78] Simon M. K. and Alouini M. S., „Performance analysis of generalized selection combining 

with threshold test per branch (T-GSC)“, IEEE Transactions on Vehicular Technology, vol. 

51, no. 5, pp. 1018-1029, Sept. 2002, DOI: 10.1109/TVT.2002.800630   

[79] Simon M. K. and Alouini M. S., „A unified performance analysis of digital 

communications with dual selective combining diversity over correlated Rayleigh and 

Nakagami-m fading channels“, IEEE Transactions on Communications, vol. 47, no. 1, pp. 

33-43, January 1999. DOI: 10.1109/26.747811 

[80] Simon M. K. and Alouini, M. S. „Digital Communications Over Fading Channels“, John 

Wiley and Sons, Inc., 2005. DOI: 10.1002/0471715220  

[81] Simon M. K. „Comments on infinite-series representations associated with the bivariate 

Rician distribution and their applications“, IEEE Transaction on Communications, vol. 54, 

no. 8, pp. 1511-1512, August 2006. DOI: 10.1109/TCOMM.2006.878821 

[82] Stamenković G., Panić, S.R., Rančić D., Stefanović Č. and Stefanović M. „Performance 

analysis of wireless communication system in general fading environment subjected to 

https://doi.org/10.1002/j.1538-7305.1948.tb01334.x
https://doi.org/10.1002/j.1538-7305.1948.tb01334.x
https://doi.org/10.1049/iet-com.2010.0143
https://doi.org/10.1109/TWC.2008.070053
https://doi.org/10.1109/26.747811


 

128 

 

shadowing and interference“, EURASIP Journal on Wireless Communications and 

Networking, SpringerOpen, August 2014. https://doi.org/10.1186/1687-1499-2014-124 

[83] Stavroulakis P. Interference analysis and reduction for wireless systems, Artech House 

Publishers, January 2003. ISBN-10: 1580533167 

[84] Stefanović D., Panić S., Spalević P. „Second Order Statistics of SC Macrodiversity System 

Operating over Gamma Shadowed Nakagami-m fading channels“, AEU-International 

Journal of Electronics and Communications, vol. 65, no. 5, pp. 413-418, May 2011.  

DOI: 10.1016/j.aeue.2010.05.001 

[85] Stefanović M., Minic S.G., Nikolic S., Panic S., Peric S., Radenkovic D., Gligorijevic M.  

„The CCI effect on system performance in Kappa-Mu fading channels“, Technics 

Technologies Education Management, vol. 7, no. 1, pp. 88-92, 2012. ISSN: 1840-1503 

[86] Subadar R., Reddy T. S. B., Sahu P. R. „Performance of an L-SC receiver over kappa-mu 

and eta-mu fading channels, Proceedings of IEEE International Conference on 

Communications“, ICC 2010, pp. 1–5, May 2010, Cape Town, South Africa. 

DOI: 10.1109/ICC.2010.5502444 

[87] The mathematical functions site, Wolfram Research, Inc., 1998–2024. 

  Online: https://functions.wolfram.com   

[88] Tomović G., Suljević S., Aleksić D., Popović Z. ”Performance of Mobile Macro Diversity 

System with Ricean Fading and Shadow Effect“, TRANSACTIONS on ELECTRONICS and 

COMMUNICATIONS, Tom 53 (67), Buletinul Stiintific al Universitatii ”Politehnica“ din 

Timisoara, Fascicola 2, pp. 247-251, 2008. ISSN: 1583-3380  

https://dspace.upt.ro/jspui/bitstream/123456789/1569/3/BUPT_ART_Tomovi%C4%87_f.p

df 

[89] Trigui I., Laourine A., Affes S., Stephene A. „Outage Analysis of Wireless Systems over 

Composite Fading / Shadowing Channels with Co-channel Interferences“, Proceedings of 

IEEE Wireless Communications and Networking Conference, pp. 1-6, 5-8 April 2009, 

Budapest, Hungary. ISBN: 978-1-4244-2947-9 

[90] Trigui I., Laourine A., Affes S., Stephene A. „Performance Analysis of Mobile Radio 

Systems over Composite Fading / Shadowing Channels with Co-located Interferences“, 

IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp. 3448-3453, July 2009. 

DOI: 10.1109/TWC.2009.081250 

[91] Tse D. and Viswanath P. Fundamentals of Wireless Communications, Cambridge 

University Press, July 2005. ISBN-10: 0-521-84527-0 

[92] Tsiftsis T., Karagiannidis G. K., Kostopoulos S. A. and Pavlidou F. N. „BER analysis of 

collaborative dual-hop wireless transmissions“, Electronics Letters, vol. 40, no. 11, pp. 679-

681, May 2004. https://doi.org/10.1049/el:20040393 

[93] Vitetta G. M., Mengali U. and Taylor D. P. „An error probability formula for noncoherent 

orthogonal binary FSK with dual diversity on correlated Rician channels“, IEEE 

Communications Letters, vol. 3, no. 2, pp. 43-45, February 1999. 

DOI: 10.1109/4234.749357 

[94] Wang X., Beaulieu N.C. „Switching rates of two-branch selection diversity in κ–μ and α–

μ distributed fadings“, IEEE Transactions on Wireless Communications, vol. 8, no. 4, 

pp. 1667–1671, May 2009. DOI: 10.1109/TWC.2009.080411 

https://doi.org/10.1186/1687-1499-2014-124
https://functions.wolfram.com/
https://dspace.upt.ro/jspui/bitstream/123456789/1569/3/BUPT_ART_Tomovi%C4%87_f.pdf
https://dspace.upt.ro/jspui/bitstream/123456789/1569/3/BUPT_ART_Tomovi%C4%87_f.pdf
https://doi.org/10.1049/el:20040393
https://doi.org/10.1109/4234.749357


 

129 

 

[95] Wen H., Pan S., Gao W., Zhao Q., Wang Y. „Real-time single-frequency GPS/BDS code 

multipath mitigation method based on C/N0 normalization“, Measurement, vol. 164, May 

2020. http://dx.doi.org/10.1016/j.measurement.2020.108075  

[96] Yacoub M. D. „The κ–μ distribution: a general fading distribution“, IEEE 54th vehicular 

technology conference, VTC Fall 2001, Proceedings, vol. 3, pp. 1427–1431, 07-11 October 

2001, Atlantic City, USA.  DOI: 10.1109/VTC.2001.956432 

[97] Yacoub M. D. „The κ–μ distribution and the η–μ distribution“, IEEE Antennas and 

Propagation Magazine, vol. 49, no. 1, pp. 68–81, February 2007. 

DOI: 10.1109/MAP.2007.370983 

[98] Yuan H., Zhang Z., He X., Li G., Wang S. „Stochastic model assessment of lowcost 

devices considering the impacts of multipath effects and atmospheric delays“, Measurement, 

vol. 188, January 2022. http://dx.doi.org/10.1016/j.measurement.2021.110619  

[99] Yue S., Ouarda T. B. M. J., Bobee B. „A review of bivariate gamma distributions for 

hydrological application“, Journal of Hydrology, vol. 246, Issues 1-4, pp. 1-18, June 2001. 

https://doi.org/10.1016/S0022-1694(01)00374-2 

[100] Zdravković S., Aleksić D., Marjanović I., Petković G., Djošić D., Milačić P. „Level 

crossing rate of ratio of product two κ-µ random variable and κ-µ random variable evaluated 

by Laplace approximation formula“, 12th International Conference of Applied 

Electromagnetics – PES 2015, 2 pages, August 31 – September 02 2015, Niš, Serbia. 

ISBN: 978-86-6125-145-0 

[101] Zhang J. and Aalo V. „Effect of Macrodiversity on Average-Error Probabilities in a 

Rician Fading Channel with Correlated Lognormal Shadowing“, IEEE Transactions on 

Communications, vol. 49, no. 1, pp. 14-18, January 2001. DOI: 10.1109/26.898244 

[102] Zhao H., Zhang P., Zhang R., Yao R., Deng W. „A novel performance trend prediction 

approach using ENBLS with GWO“, Measurement Science and Technology, vol. 34, no. 2, 

November 2022. DOI: 10.1088/1361-6501/ac9a61  

[103] Zheng H., Huo Y., Zhang Y., Xu R. „Log-normal fluctuation channel model of short 

distance in tunnels“, Measurement, vol. 143, pp. 103–111, September 2019. 

http://dx.doi.org/10.1016/j.measurement.2018.12.002 

[104] Zogas D. A., Karagiannidis G. K., and Kotsopoulos S. A. „Equal gain combining over 

Nakagami-n (Rice) and Nakagami-q (Hoyt) generalized fading channels“, IEEE 

Transactions on Wireless Communications, vol. 4, no. 2, pp. 374-379, March 2005. DOI: 

10.1109/TWC.2004.842953 

[105] Zogas D. A., Karagiannidis G. K. „Infinite series representations associated with the 

bivariate Rician distribution and their applications“, IEEE Trans. Commun., vol. 53, no. 11, 

pp. 1790-1794, November 2005. DOI: 10.1109/TCOMM.2005.858659  

http://dx.doi.org/10.1016/j.measurement.2020.108075
http://dx.doi.org/10.1016/j.measurement.2021.110619
https://doi.org/10.1016/S0022-1694(01)00374-2
http://dx.doi.org/10.1016/j.measurement.2018.12.002
https://doi.org/10.1109/TCOMM.2005.858659


 

 

БИОГРАФИЈА 

Данијела Алексић (девојачко Николић) је рођена 07.12.1973. године у Нишу. 

Основну школу “Чегар“ и природно математичку Гимназију „9. мај“ завршила је у Нишу. 

После средње школе уписала је Електронски факултет у Нишу, смер „Електроника и 

телекомуникације“. Дипломирала је на Електронском факултету у Нишу 07. 07.2001. 

године са оценом 10 и стекла звање дипломирани инжењер електротехнике за 

електронику и телекомуникације. 

Од 01.03.2002. године запослена је на Високој Техничкој школи у Нишу. Радила 

је као наставник практичне наставе, где је изводила лабораторијске и рачунске вежбе из 

стручних предмета који припадају области „Електроника и телекомуникације“. 

На Техничком факултету у Чачку одбранила је магистарску тезу 15.07.2010. 

године, под називом „Утицај простирања електромагнетних таласа на перформансе 

бежичног телекомуникационог система“. 

Након магистрирања наставила је да ради као предавач на Високој Техничкој 

школи струковних студија у Нишу (сада Академији техничко васпитачких струковних 

студија Одсек Ниш), на одсецима основних струковних студија, Савремене Рачунарске 

технологије и Комуникационе технологије у области електронике и телекомуникација, 

као и на одсеку мастер струковних студија Мултимедијалне комуникационе технологије,  

у области телекомуникација. 

Докторске академске студије уписала је школске 2021/2022. године на Факултету 

техничких наука у Чачку, студијски програм Електротехничко и рачунарско 

инжењерство, модул ЕЛЕКТРОЕНЕРГЕТИКА. При томе, мр Данијела Алексић је 

уписана на III годину докторских академских студија на основу Закона о високом 

образовању и Правилника о докторским студијама и стицању звања доктора наука на 

Факултету техничких наука у Чачку (члан 4, став 2, тачка б)). Кандидат је положио све 

испите на докторским студијама. 

У досадашњем раду, као аутор или коаутор, до сада је објавила 34 радa у 

часописима међународног и националног значаја, као и на скуповима међународног и 

националног значаја, из области Теоријске и опште електротехнике и Телекомуникација, 

од којих je 5 са  SCI листе. 

  

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 

 



 

 

 



 

 

 


